266 research outputs found
Facile synthesis of graphene via direct water-sodium dodecylbenzenesulfonate exfoliation
In this study, a mild, one-step electrochemical exfoliation was demonstrated for the synthesis of graphene with the assistance of water and a surfactant, particularly sodium dodecylbenzenesulfonate and sodium dodecyl sulphate. Different types of water-surfactant solutions in different concentrations could influence the exfoliation of graphite rods. From one to several layers of graphene flakes (with a thickness of approximately 1 nm) could be produced directly after sonication. AFM images showed that the flake diameters from this source were typically small. Raman and IR spectroscopic analyses of the dispersed phase suggested that the exfoliation of graphene sheets was accomplished. The flakes were also characterized using field emission scanning electron microscopy, X-ray diffraction, and cyclic voltammetry techniques. Further improvements in this methodology may pave the way to develop green, cost-effective, and large-scale production methods for graphene sheets
Are patterns of fine-scale spatial genetic structure consistent between sites within tropical tree species?
JRS was funded by the Swiss National Science Foundation (SNF) (http://www.snf.ch/en/Pages/default.aspx) grant number PDFMP3_132479 / 1 awarded to JG. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Selective scattering between Floquet-Bloch and Volkov states in a topological insulator
The coherent optical manipulation of solids is emerging as a promising way to
engineer novel quantum states of matter. The strong time periodic potential of
intense laser light can be used to generate hybrid photon-electron states.
Interaction of light with Bloch states leads to Floquet-Bloch states which are
essential in realizing new photo-induced quantum phases. Similarly, dressing of
free electron states near the surface of a solid generates Volkov states which
are used to study non-linear optics in atoms and semiconductors. The
interaction of these two dynamic states with each other remains an open
experimental problem. Here we use Time and Angle Resolved Photoemission
Spectroscopy (Tr-ARPES) to selectively study the transition between these two
states on the surface of the topological insulator Bi2Se3. We find that the
coupling between the two strongly depends on the electron momentum, providing a
route to enhance or inhibit it. Moreover, by controlling the light polarization
we can negate Volkov states in order to generate pure Floquet-Bloch states.
This work establishes a systematic path for the coherent manipulation of solids
via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic
Assessing the generalisability of the psychosis metabolic risk calculator (PsyMetRiC) for young people with first-episode psychosis with validation in a Hong Kong Chinese Han population:a 4-year follow-up study
Background: Metabolic syndrome (MetS) is common following first-episode psychosis (FEP), contributing to substantial morbidity and mortality. The Psychosis Metabolic Risk Calculator (PsyMetRiC), a risk prediction algorithm for MetS following a FEP diagnosis, was developed in the United Kingdom and has been validated in other European populations. However, the predictive accuracy of PsyMetRiC in Chinese populations is unknown. Methods: FEP patients aged 15–35 y, first presented to the Early Assessment Service for Young People with Early Psychosis (EASY) Programme in Hong Kong (HK) between 2012 and 2021 were included. A binary MetS outcome was determined based on the latest available follow-up clinical information between 1 and 12 years after baseline assessment. The PsyMetRiC Full and Partial algorithms were assessed for discrimination, calibration and clinical utility in the HK sample, and logistic calibration was conducted to account for population differences. Sensitivity analysis was performed in patients aged >35 years and using Chinese MetS criteria. Findings: The main analysis included 416 FEP patients (mean age = 23.8 y, male sex = 40.4%, 22.4% MetS prevalence at follow-up). PsyMetRiC showed adequate discriminative performance (full-model C = 0.76, 95% C.I. = 0.69–0.81; partial-model: C = 0.73, 95% C.I. = 0.65–0.8). Systematic risk underestimation in both models was corrected using logistic calibration to refine PsyMetRiC for HK Chinese FEP population (PsyMetRiC-HK). PsyMetRiC-HK provided a greater net benefit than competing strategies. Results remained robust with a Chinese MetS definition, but worse for the older age group. Interpretation: With good predictive performance for incident MetS, PsyMetRiC-HK presents a step forward for personalized preventative strategies of cardiometabolic morbidity and mortality in young Hong Kong Chinese FEP patients. Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.</p
Subcellular Localization of SUN2 Is Regulated by Lamin A and Rab5
SUN2 is an inner nuclear membrane protein with a conserved Sad1/UNC-84 homology SUN-domain at the C-terminus. Intriguingly, SUN2 has also been reported to interact with Rab5, which localizes in early endosomes. To clarify the dual subcellular localization of SUN2, we investigated its localization in lamin A/C deficient cells rescued with lamin A or lamin C isoform, and in HeLa cells transfected with Rab5 or its mutants. We found that expression of lamin A but not lamin C partly restored the nuclear envelope localization of SUN2. SUN2 was redistributed to endosomes upon overexpression of Rab5, but remained on the nuclear envelope when the SUN domain was deleted. To explore the physiological function of SUN2 in vesicle trafficking and endocytosis, we demonstrated the colocalization of endogenous SUN2 and Rab5. Moreover, overexpression of SUN2 stimulated the uptake of transferrin while suppression of SUN2 expression attenuated the process. These findings support a role of SUN2 in endocytosis
Estimating Infection Attack Rates and Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic Surveillance Data
This study reports that using serological data coupled with clinical surveillance data can provide real-time estimates of the infection attack rates and severity in an emerging influenza pandemic
Global Mapping of DNA Methylation in Mouse Promoters Reveals Epigenetic Reprogramming of Pluripotency Genes
DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early embryo is thus crucial for transmission of pluripotency
Characterization of the commercially-available fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a marker for chloroquine resistance and uptake in a 96-well plate assay
Chloroquine was a cheap, extremely effective drug against Plasmodium falciparum until resistance arose. One approach to reversing resistance is the inhibition of chloroquine efflux from its site of action, the parasite digestive vacuole. Chloroquine accumulation studies have traditionally relied on radiolabelled chloroquine, which poses several challenges. There is a need for development of a safe and biologically relevant substitute. We report here a commercially-available green fluorescent chloroquine-BODIPY conjugate, LynxTag-CQGREEN, as a proxy for chloroquine accumulation. This compound localized to the digestive vacuole of the parasite as observed under confocal microscopy, and inhibited growth of chloroquine-sensitive strain 3D7 more extensively than in the resistant strains 7G8 and K1. Microplate reader measurements indicated suppression of LynxTag-CQGREEN efflux after pretreatment of parasites with known reversal agents. Microsomes carrying either sensitive or resistant-type PfCRT were assayed for uptake; resistant-type PfCRT exhibited increased accumulation of LynxTag-CQGREEN, which was suppressed by pretreatment with known chemosensitizers. Eight laboratory strains and twelve clinical isolates were sequenced for PfCRT and Pgh1 haplotypes previously reported to contribute to drug resistance, and pfmdr1 copy number and chloroquine IC50s were determined. These data were compared with LynxTag-CQGREEN uptake/fluorescence by multiple linear regression to identify genetic correlates of uptake. Uptake of the compound correlated with the logIC50 of chloroquine and, more weakly, a mutation in Pgh1, F1226Y
- …