9 research outputs found
33000 Photons per MeV from Mixed (Lu0.75Y0.25)3Al5O12:Pr Scintillator Crystals
(LuxY1-x)3Al5O12:Pr (x = 0.25, 0.50, 0.75) crystals have been grown by the Czochralski method and their scintillation properties have been examined. Compared to the well-respected LuAG:Pr scintillator, which has so extensively been studied in the recent years, the new mixed LuYAG:Pr crystals display markedly higher light yields, regardless of the value of x. In particular, (Lu0.75Y0.25)3Al5O12:0.2%Pr characterized by a yield of 33000 ph/MeV, an energy resolution of 4.4% (at 662 keV), and a density of 6.2 g/cm3, seems to be an ideal candidate to supercede Lu3Al5O12:0.2%Pr (19000 ph/MeV, 4.6%, 6.7 g/cm3) in various applications. The observed enhancement of light output following the partial substitution of lutetium by yttrium is most probably related to some specific differences in distributions of shallow traps in particular materials
A Deeper Insight into (Lu,Y)AG:Pr Scintillator Crystals
Interior of Czochralski-grown (Lu,Y)AG:Pr crystals has been examined by means of
several techniques, such as X-Ray Photoelectron Spectroscopy, X-Ray Diffraction,
Time-of-Flight Secondary Ion Mass Spectrometry, and magnetic susceptibility measurements. Additionally, their luminescence has been monitored at various combinations of a double-beam (X-ray/IR) excitation
Modification of magnetic properties of Pt/Co/Pt films by Ga+ Ion irradiation: focused versus uniform irradiation
30 keV Ga+ irradiation-induced changes of magnetic and magneto-optical properties of sputtered Pt/Co/Pt ultrathin trilayers films have been studied as a function of the ion fluence. Out-of-plane magnetic anisotropy states with enhanced magneto-optical effects were evidenced for specific values of cobalt thickness and irradiation fluence. Results obtained after uniform or quasi-uniform focused ion beam irradiation on either out-of-plane or in-plane magnetized sputtered pristine trilayers are compared. Similar irradiation-induced magnetic changes are evidenced in quasi-uniformly focused ion beam or uniformly irradiated films, grown either by sputtering or molecular beam epitaxy. We discuss on plausible common mechanisms underlying the observed effects.Web of Science13351226121
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Background:
Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.
Methods:
We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.
Results:
Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.
Conclusions:
Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks
Alignment for the first precision measurements at Belle II
International audienceOn March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data
Alignment for the first precision measurements at Belle II
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector.
The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays.
With increasing luminosity and experience, the alignment is approaching the target performance, crucial for the first physics analyses in the era of Super-BFactories. We will present the software framework for the detector calibration and alignment, the results from the first physics run and the prospects in view of the experience with the first data
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking.
This paper will report on the final arrangement of the silicon vertex detector part of Belle II with a focus on online monitoring of detector conditions and data quality, on the design and use of diagnostic and reference plots, and on integration with the software framework of Belle II. Data quality monitoring plots will be discussed with a focus on simulation and acquired cosmic and collision data