2 research outputs found

    Development of efficient designs of cooking systems. I. Experimental

    No full text
    In the conventional cooking practice, where a pot or a pan is directly placed on a flame, the thermal energy efficiency is in the range of 10-25%. It was thought desirable to increase this efficiency up to 60% or more. The cooking systems can be of various sizes. In the developing world (85% of the worlds population), open pan cooking is largely still practiced at the family level (4-10 people) or at the community level (50-2000 people or more). The latter requirement is encountered in schools, homes for senior citizens, jails, social and/or religious centers (temples, mosques, churches), social and/or educational functions (conferences, marriages, celebrations, etc.), remand homes, etc. For these different types of final application, in the present work, cooking systems have been developed. A systematic work has has been reported regarding the effect of several parameters on thermal efficiency. The parameters include the cooker size, number of pots, size and aspect ratio of the pots, heat flux, flame size, flux-time relationship, insulating alternatives, etc. Local and global optima of the parameters have been obtained, resulting in thermal efficiency of about 70%. © 2011 American Chemical Society

    Development of efficient designs of cooking systems. II. Computational fluid dynamics and optimization

    No full text
    Sections 2-6 of Part I were devoted to the analysis of heat transfer characteristics of cookers. In all the experiments, only water was employed as a working medium. Now, we extend such an analysis to the actual cooking process in order to arrive at an improved cooking device. The major strategies for the optimization of energy utilization is to design appropriate insulation that has been obtained by two cover vessels. In order to select an air gap, the flow and temperature patterns in the air gap have been extensively analyzed using computational fluid dynamics (CFD). The flow pattern and heat transfer in cooking pots have also been analyzed by CFD. This has enabled us to design suitable internals for minimizing the stratification of temperature. The understanding of fluid mechanics has also given basis for selection of heat flux, gap between burner tip and cooker bottom, and temperature of flue gases leaving the cooker. Chemical engineering principles have been used for modeling and optimization. Kinetics have been obtained in batch cookers. The knowledge of kinetics, thermal mixing, axial mixing, and optimum selection of insulation have been employed for the development of continuous cookers. The continuous mode of operation also helps in saving of energy. Systematic data have been collected for the design and scale up of continuous cookers. © 2011 American Chemical Society
    corecore