2 research outputs found

    On the Potential of Fuzzy Logic for Solving the Challenges of Cooperative Multi-Robotic Wireless Sensor Networks

    No full text
    Wireless sensor networks have recently been widely used in several applications and scenarios, especially because they have the ability and flexibility for establishing a scalable and reliable wireless network. Cooperative multi-robotic systems (CMRS) are one example of these applications where establishing a wireless network between robots is essential and paramount to their operation. Further, these robots can utilize their mobility to provide sensing functionality for areas that are not covered by the static sensor. This can be achieved by equipping the robots with specific sensors to sense the area of interest (AoI) and report the sensed data to a remote monitoring center for further processing and decision-making. However, the nodes that form the sensor network have limited energy, and, as such, efficient algorithms in clusters’ formation, packets’ routing, and energy and mobility management are paramount. In this paper, a literature survey is presented containing the most related works that have been proposed to solve these challenges utilizing fuzzy logic. Most of the literature work attempted to utilize a de-centralized approach, where certain input parameters such as the residual energy, communication link quality, network congestion status, the nodes’ distance to the sink node and its location with respect to the other nodes, and the data and their sampling rate are all used as inputs to the fuzzy logic controller. These input parameters are used to determine several performance vital factors such as the cluster formation and its cluster head, best route to the sink node, optimal power management policies in terms of sleep/awake times needed to maximize the network lifetime, nodes’ mobility management policies to maintain network connectivity, and best route in terms of packet loss and delay

    Wireless Sensor Networks for Smart Cities: Network Design, Implementation and Performance Evaluation

    No full text
    The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting
    corecore