53 research outputs found

    Burst spinal cord stimulation for the treatment of cervical dystonia with intractable pain: A pilot study

    Get PDF
    Shimizu, T.; Maruo, T.; Miura, S.; Kimoto, Y.; Ushio, Y.; Goto, S.; Kishima, H. Burst Spinal Cord Stimulation for the Treatment of Cervical Dystonia with Intractable Pain: A Pilot Study. Brain Sci. 2020, 10, 827

    BCI training to move a virtual hand reduces phantom limb pain: A randomized crossover trial

    Get PDF
    Objective: To determine whether training with a brain–computer interface (BCI) to control an image of a phantom hand, which moves based on cortical currents estimated from magnetoencephalographic signals, reduces phantom limb pain. Methods: Twelve patients with chronic phantom limb pain of the upper limb due to amputation or brachial plexus root avulsion participated in a randomized single-blinded crossover trial. Patients were trained to move the virtual hand image controlled by the BCI with a real decoder, which was constructed to classify intact hand movements from motor cortical currents, by moving their phantom hands for 3 days (“real training”). Pain was evaluated using a visual analogue scale (VAS) before and after training, and at follow-up for an additional 16 days. As a control, patients engaged in the training with the same hand image controlled by randomly changing values (“random training”). The 2 trainings were randomly assigned to the patients. This trial is registered at UMIN-CTR (UMIN000013608). Results: VAS at day 4 was significantly reduced from the baseline after real training (mean [SD], 45.3 [24.2]–30.9 [20.6], 1/100 mm; p = 0.009 0.025). Compared to VAS at day 1, VAS at days 4 and 8 was significantly reduced by 32% and 36%, respectively, after real training and was significantly lower than VAS after random training (p < 0.01). Conclusion: Three-day training to move the hand images controlled by BCI significantly reduced pain for 1 week. Classification of evidence: This study provides Class III evidence that BCI reduces phantom limb pain

    Evaluating the Safety of Simultaneous Intracranial Electroencephalography and Functional Magnetic Resonance Imaging Acquisition Using a 3 Tesla Magnetic Resonance Imaging Scanner

    Get PDF
    Background: The unsurpassed sensitivity of intracranial electroencephalography (icEEG) and the growing interest in understanding human brain networks and ongoing activities in health and disease have make the simultaneous icEEG and functional magnetic resonance imaging acquisition (icEEG-fMRI) an attractive investigation tool. However, safety remains a crucial consideration, particularly due to the impact of the specific characteristics of icEEG and MRI technologies that were safe when used separately but may risk health when combined. Using a clinical 3-T scanner with body transmit and head-receive coils, we assessed the safety and feasibility of our icEEG-fMRI protocol. Methods: Using platinum and platinum-iridium grid and depth electrodes implanted in a custom-made acrylic-gel phantom, we assessed safety by focusing on three factors. First, we measured radio frequency (RF)-induced heating of the electrodes during fast spin echo (FSE, as a control) and the three sequences in our icEEG-fMRI protocol. Heating was evaluated with electrodes placed orthogonal or parallel to the static magnetic field. Using the configuration with the greatest heating observed, we then measured the total heating induced in our protocol, which is a continuous 70-min icEEG-fMRI session comprising localizer, echo-planar imaging (EPI), and magnetization-prepared rapid gradient-echo sequences. Second, we measured the gradient switching-induced voltage using configurations mimicking electrode implantation in the frontal and temporal lobes. Third, we assessed the gradient switching-induced electrode movement by direct visual detection and image analyses. Results: On average, RF-induced local heating on the icEEG electrode contacts tested were greater in the orthogonal than parallel configuration, with a maximum increase of 0.2°C during EPI and 1.9°C during FSE. The total local heating was below the 1°C safety limit across all contacts tested during the 70-min icEEG-fMRI session. The induced voltage was within the 100-mV safety limit regardless of the configuration. No gradient switching-induced electrode displacement was observed. Conclusion: We provide evidence that the additional health risks associated with heating, neuronal stimulation, or device movement are low when acquiring fMRI at 3 T in the presence of clinical icEEG electrodes under the conditions reported in this study. High specific absorption ratio sequences such as FSE should be avoided to prevent potential inadvertent tissue heating

    Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder

    Get PDF
    Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data

    White matter microstructural alterations in patients with neuropathic pain after spinal cord injury: a diffusion tensor imaging study

    Get PDF
    BackgroundThrough contrastive analysis, we aimed to identify the white matter brain regions that show microstructural changes in patients with neuropathic pain (NP) after spinal cord injury (SCI).MethodsWe categorized patients with SCI into NP (n = 30) and non-NP (n = 15) groups. We extracted diffusion tensor maps of fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity. A randomization-based method in tract-based spatial statistics was used to perform voxel-wise group comparisons among the FA, MD, AD, and RD for nonparametric permutation tests.ResultsAtlas-based analysis located significantly different regions (p &lt; 0.05) in the appointed brain atlas. Compared to the non-NP group, the NP group showed higher FA in the posterior body and splenium of the corpus callosum and higher AD in the corpus callosum, internal capsule, corona radiata, posterior thalamic radiation, sagittal stratum, external capsule, cingulum, fornix/stria terminalis, superior longitudinal fasciculus, and uncinate fasciculus.ConclusionThe results demonstrated that compared with the non-NP group, NP pathogenesis after SCI was potentially related to higher values in FA that are associated with microstructural changes in the posterior body and splenium of the corpus callosum, which could be regarded as central sensitization or network hyperexcitability

    Analysis of gut microbiome, host genetics, and plasma metabolites reveals gut microbiome-host interactions in the Japanese population

    Get PDF
    Interaction between the gut microbiome and host plays a key role in human health. Here, we perform a metagenome shotgun-sequencing-based analysis of Japanese participants to reveal associations between the gut microbiome, host genetics, and plasma metabolome. A genome-wide association study (GWAS) for microbial species (n = 524) identifies associations between the PDE1C gene locus and Bacteroides intestinalis and between TGIF2 and TGIF2-RAB5IF gene loci and Bacteroides acidifiaciens. In a microbial gene ortholog GWAS, agaE and agaS, which are related to the metabolism of carbohydrates forming the blood group A antigen, are associated with blood group A in a manner depending on the secretor status determined by the East Asian-specific FUT2 variant. A microbiome-metabolome association analysis (n = 261) identifies associations between bile acids and microbial features such as bile acid metabolism gene orthologs including bai and 7β-hydroxysteroid dehydrogenase. Our publicly available data will be a useful resource for understanding gut microbiome-host interactions in an underrepresented population.Tomofuji Yoshihiko, Kishikawa Toshihiro, Sonehara Kyuto, et al. Analysis of gut microbiome, host genetics, and plasma metabolites reveals gut microbiome-host interactions in the Japanese population. Cell Reports 42, 113324 (2023); https://doi.org/10.1016/j.celrep.2023.113324

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Burst Spinal Cord Stimulation for the Treatment of Cervical Dystonia with Intractable Pain: A Pilot Study

    No full text
    Pain is the most common and disabling non-motor symptom in patients with cervical dystonia. Here, we report four patients with painful cervical dystonia in whom burst spinal cord stimulation (SCS) in the cervical region produced sustained and significant improvements in both dystonic pain and motor symptoms. Further studies need to be performed to investigate the clinical efficacy of burst SCS for patients with cervical dystonia

    Relationship between normalized distributional pattern and functional outcome in patients with acute cardiogenic cerebral embolism.

    No full text
    This study aimed to elucidate spatial characteristics for magnetic resonance imaging (MRI) of cardiogenic cerebral embolism, to determine imaging biomarkers predicting patient outcome and cerebral herniation in cardioembolic stroke. This retrospective study assessed 90 patients with cardiogenic cerebral embolism. All images from MRI were normalized using a voxel-based symptom lesion mapping technique. Patients were categorized into two subgroups based on the outcome and presence of cerebral herniation. Each subgroup was assessed individually. The distribution map of all analyzed patients revealed accumulated ischemic lesions in bilateral middle cerebral artery areas. Ischemic lesions for the poor outcome group accumulated at the corona radiata on the right side and throughout the entire left hemisphere. Receiver operating characteristic (ROC) analysis suggested that a normalized ischemic volume of 62.8 mL allowed optimal differentiation between good and poor outcomes (sensitivity, 0.923; specificity, 0.923; area under the curve (AUC), 0.91) for left-side-dominant infarction. The distribution map for the cerebral herniation group revealed large ischemic areas in the left hemisphere. The analysis of differential involvement map with random permutation analysis showed that left anterior circulation infarcts were associated with midline shift. Receiver operating characteristic analysis revealed that a normalized infarction volume of 192.9 mL was highly predictive of cerebral herniation (sensitivity, 0.929; specificity, 0.750; AUC, 0.895). The medial frontal and occipital lobes, caudate head and basal ganglia were significantly involved in those patients who developed cerebral herniation. Ischemic volume contributed to outcomes and cerebral herniation. Ischemic lesions of the anterior and posterior cerebral arteries and basal ganglia in addition to middle cerebral artery area were identified as differences on MRI images between with and without cerebral herniation patients
    corecore