35 research outputs found

    Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    Get PDF
    Braun/murein lipoprotein (Lpp) is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT) bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26°C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26°C, the Y. pestis Δlpp mutant cultured at 37°C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA) downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA

    Protection Afforded by Fluoroquinolones in Animal Models of Respiratory Infections with Bacillus anthracis, Yersinia pestis, and Francisella tularensis

    Get PDF
    Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities

    Immunomodulatory and Protective Roles of Quorum-Sensing Signaling Molecules N-Acyl Homoserine Lactones during Infection of Mice with Aeromonas hydrophila ▿ †

    No full text
    Aeromonas hydrophila leads to both intestinal and extraintestinal infections in animals and humans, and the underlying mechanisms leading to mortality are largely unknown. By using a septicemic mouse model of infection, we showed that animals challenged with A. hydrophila die because of kidney and liver damage, hypoglycemia, and thrombocytopenia. Pretreatment of animals with quorum-sensing-associated signaling molecules N-acyl homoserine lactones (AHLs), such as butanoyl and hexanoyl homoserine lactones (C4- and C6-HSLs), as well as N-3-oxododecanoyl (3-oxo-C12)-HSL, prevented clinical sequelae, resulting in increased survivability of mice. Since little is known as to how different AHLs modulate the immune response during infection, we treated mice with the above AHLs prior to lethal A. hydrophila infection. When we compared results in such animals to those in controls, the treated animals exhibited a significantly reduced bacterial load in the blood and other mouse organs, as well as various levels of cytokines/chemokines. Importantly, neutrophil numbers were significantly elevated in the blood of C6-HSL-treated mice compared to those in animals given phosphate-buffered saline and then infected with the bacteria. These findings coincided with the fact that neutropenic animals were more susceptible to A. hydrophila infection than normal mice. Our data suggested that neutrophils quickly cleared bacteria by either phagocytosis or possibly another mechanism(s) during infection. In a parallel study, we indeed showed that other predominant immune cells inflicted during A. hydrophila infections, such as murine macrophages, when they were pretreated with AHLs, rapidly phagocytosed bacteria, whereas untreated cells phagocytosed fewer bacteria. This study is the first to report that AHL pretreatment modulates the innate immune response in mice and enhances their survivability during A. hydrophila infection

    Role of Primary Human Alveolar Epithelial Cells in Host Defense against Francisella tularensis Infection▿

    No full text
    Francisella tularensis, an intracellular pathogen, is highly virulent when inhaled. Alveolar epithelial type I (ATI) and type II (ATII) cells line the majority of the alveolar surface and respond to inhaled pathogenic bacteria via cytokine secretion. We hypothesized that these cells contribute to the lung innate immune response to F. tularensis. Results demonstrated that the live vaccine strain (LVS) contacted ATI and ATII cells by 2 h following intranasal inoculation of mice. In culture, primary human ATI or ATII cells, grown on transwell filters, were stimulated on the apical (AP) surface with virulent F. tularensis Schu 4 or LVS. Basolateral (BL) conditioned medium (CM), collected 6 and 24 h later, was added to the BL surfaces of transwell cultures of primary human pulmonary microvasculature endothelial cells (HPMEC) prior to the addition of polymorphonuclear leukocytes (PMNs) or dendritic cells (DCs) to the AP surface. HPMEC responded to S4- or LVS-stimulated ATII, but not ATI, CM as evidenced by PMN and DC migration. Analysis of the AP and BL ATII CM revealed that both F. tularensis strains induced various levels of a variety of cytokines via NF-κB activation. ATII cells pretreated with an NF-κB inhibitor prior to F. tularensis stimulation substantially decreased interleukin-8 secretion, which did not occur through Toll-like receptor 2, 2/6, 4, or 5 stimulation. These data indicate a crucial role for ATII cells in the innate immune response to F. tularensis

    New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague

    No full text
    ABSTRACT The Enterobacteriaceae family members, including the infamous Yersinia pestis, the causative agent of plague, have a highly conserved interbacterial signaling system that is mediated by the autoinducer-2 (AI-2) quorum-sensing molecule. The AI-2 system is implicated in regulating various bacterial virulence genes in diverse environmental niches. Deletion of the gene encoding the synthetic enzyme for the AI-2 substrate, luxS, leads to either no significant change or, paradoxically, an increase in in vivo bacterial virulence. We showed that deletion of the rbsA and lsrA genes, components of ABC transport systems that interact with AI-2, synergistically disrupted AI-2 signaling patterns and resulted in a more-than-50-fold decrease in Y. pestis strain CO92 virulence in a stringent pneumonic plague mouse model. Deletion of luxS or lsrK (encoding AI-2 kinase) from the ΔrbsA ΔlsrA background strain or complementation of the ΔrbsA ΔlsrA mutant with the corresponding gene(s) reverted the virulence phenotype to that of the wild-type Y. pestis CO92. Furthermore, the administration of synthetic AI-2 in mice infected with the ΔrbsA ΔlsrA ΔluxS mutant strain attenuated this triple mutant to a virulence phenotype similar to that of the ΔrbsA ΔlsrA strain in a pneumonic plague model. Conversely, the administration of AI-2 to mice infected with the ΔrbsA ΔlsrA ΔluxS ΔlsrK mutant did not rescue animals from lethality, indicating the importance of the AI-2–LsrK axis in regulating bacterial virulence. By performing high-throughput RNA sequencing, the potential role of some AI-2-signaling-regulated genes that modulated bacterial virulence was determined. We anticipate that the characterization of AI-2 signaling in Y. pestis will lead to reexamination of AI-2 systems in other pathogens and that AI-2 signaling may represent a broad-spectrum therapeutic target to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century. IMPORTANCE Yersinia pestis is the bacterial agent that causes the highly fatal disease plague. The organism represents a significant concern because of its potential use as a bioterror agent, beyond the several thousand naturally occurring human infection cases occurring globally each year. While there has been development of effective antibiotics, the narrow therapeutic window and challenges posed by the existence of antibiotic-resistant strains represent serious concerns. We sought to identify novel virulence factors that could potentially be incorporated into an attenuated vaccine platform or be targeted by novel therapeutics. We show here that a highly conserved quorum-sensing system, autoinducer-2, significantly affected the virulence of Y. pestis in a mouse model of pneumonic plague. We also identified steps in autoinducer-2 signaling which had confounded previous studies and demonstrated the potential for intervention in the virulence mechanism(s) of autoinducer-2. Our findings may have an impact on bacterial pathogenesis research in many other organisms and could result in identifying potential broad-spectrum therapeutic targets to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century

    Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures

    No full text
    Braun/murein lipoprotein (Lpp) is involved in inflammatory responses and septic shock. We previously characterized a Δlpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT) bacterium. We performed global transcriptional profiling of WT Y. pestis and its Δlpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26 • C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26 • C, the Y. pestis Δlpp mutant cultured at 37 • C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA) downregulated in the Δlpp mutant relative to WT Y. pestis. Indeed, complementation of the Δlpp mutant with the htrA gene restored intracellular survival of the Y. pestis Δlpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA

    Protective immunity elicited by oral immunization of mice with Salmonella enterica serovar Typhimurium Braun lipoprotein (Lpp) and acetyltransferase (MsbB) mutants

    Get PDF
    We evaluated the extent of attenuation and immunogenicity of the ∆lppAB and ∆lppAB ∆msbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. Typhimurium or its aforementioned mutant strains. The ∆lppAB ∆msbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ∆lppAB ∆msbB mutant-immunized mice when compared to that of the ∆lppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ∆lppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. Typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ∆lppAB and ∆lppAB ∆msbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. Typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens
    corecore