109 research outputs found
Recommended from our members
Constraints on the onset duration of the Paleocene-Eocene Thermal Maximum.
The Paleocene-Eocene Thermal Maximum (PETM, approx. 56 Ma) provides a test case for investigating how the Earth system responds to rapid greenhouse gas-driven warming. However, current rates of carbon emissions are approximately 10 Pg C yr-1, whereas those proposed for the PETM span orders of magnitude-from ≪1 Pg C yr-1 to greater than the anthropogenic rate. Emissions rate estimates for the PETM are hampered by uncertainty over the total mass of PETM carbon released as well as the PETM onset duration. Here, I review constraints on the onset duration of the carbon isotope excursion (CIE) that is characteristic of the event with a focus on carbon cycle model-based attempts that forgo the need for a traditional sedimentary age model. I also review and compare existing PETM carbon input scenarios employing the Earth system model cGENIE and suggest another possibility-that abrupt input of an isotopically depleted carbon source combined with elevated volcanic outgassing over a longer interval can together account for key features of the PETM CIE.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'
Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM
AbstractAs an episode of rapid global warming associated with the release of massive quantities of carbon to the atmosphere and oceans, the Paleocene–Eocene Thermal Maximum (PETM, ∼56 Ma) is considered a potential analog for modern anthropogenic carbon emissions. However, the prevailing order of magnitude uncertainty in the rate of carbon release during the PETM precludes any straightforward comparison between the paleo-record and the modern. Similar barriers exist to the interpretation of many other carbon isotope excursions in the geological record. Here we use the Earth system model cGENIE to quantify the consequences of differing carbon emissions rates on the isotopic record of different carbon reservoirs. We explore the consequences of a range of emissions scenarios – from durations of carbon input of years to millennia and constant versus pulsed emissions rates, and trace how the isotopic signal is imprinted on the different carbon reservoirs. From this, we identify a characteristic relationship between the difference in carbon isotope excursion sizes between atmospheric CO2 and dissolved inorganic carbon (DIC) and the duration of carbon emissions. To the extent that available isotopic data spanning the PETM constrain the size of the marine and atmospheric carbon isotopic excursions, applying this empirical relationship suggests the duration of the component of carbon emissions that dominates the isotopic signal could be less than 3000 yr. However, utilizing the ratio of excursion size in the atmosphere to ocean as a metric to constrain duration of carbon emissions highlights the necessity to strengthen estimates for these two measurements across the PETM. Our general interpretive framework could be equally applied in assessing rates of carbon emissions for other geological events
Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record:The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reduced pCO2 and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3 preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing
Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record:The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reduced pCO2 and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3 preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing
Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record::The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reduced pCO2 and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3 preservation in the model is enhanced during eccentricity-modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model-data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing
Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record::The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reduced pCO2 and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3 preservation in the model is enhanced during eccentricity-modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model-data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing
Demise of the Planktic Foraminifer genus Morozovella during the Early Eocene Climatic Optimum: new records from ODP Site 1258 (Demerara Rise, western equatorial Atlantic) and Site 1263 (Walvis Ridge, South Atlantic)
Here we present relative abundances of planktic foraminifera that span the Early Eocene Climatic Optimum (EECO) at Ocean Drilling Program (ODP) Site 1258 in the western equatorial Atlantic. The EECO (~53.3−49.1 Ma) represents peak Cenozoic warmth, probably related to high atmospheric CO2, and when planktic foraminifera, a dominant component of marine sediment, exhibit a major biotic response. Consistent with previous work, the relative abundance of the genus Morozovella, which dominated early Paleogene tropical-subtropical assemblages, markedly and permanently declined from a mean percentage of ~32% to less than ~7% at the beginning of the EECO. The distinct decrease in Morozovella abundance occurred at Site 1258 within ~20 kyr before a negative excursion in δ13C records known as the J event and which defines the beginning of EECO. Moreover, all morozovellid species except M. aragonensis dropped in abundance permanently at Site 1258, and this is related to a reduction in test-size. Comparing our data with that from other locations, the remarkable switch in planktonic foraminifera assemblages appears to have begun first with unfavourable environmental conditions near the Equator and then extended to higher latitudes. Several potential stressors may explain observations, including some combination of algal photosymbiont inhibition (bleaching), a sustained increase in temperature, or an extended decrease in pH
Astronomically paced changes in overturning circulation in the Western North Atlantic during the middle Eocene
North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth’s ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today’s climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5–46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation
- …