7 research outputs found
The Evolving Role of Immunotherapy in Stage III Non-Small Cell Lung Cancer
The management of Stage III non-small cell lung cancer (NSCLC) is complex and requires multidisciplinary input. Since the publication of the PACIFIC trial (consolidative durvalumab post concurrent chemotherapy and radiation in Stage III disease) which showed improved survival for patients in the immunotherapy arm, there has been much interest in the use of immunotherapy in the Stage III setting. In this review, we explore the biologic and clinical rationale for the use of immunotherapy in Stage III NSCLC, present previously published and upcoming data in the neoadjuvant, adjuvant, and concurrent realms of Stage III management, and discuss unanswered questions and challenges moving forward
Point of Care Molecular Testing: Community-Based Rapid Next-Generation Sequencing to Support Cancer Care
Purpose: Biomarker data are critical to the delivery of precision cancer care. The average turnaround of next-generation sequencing (NGS) reports is over 2 weeks, and in-house availability is typically limited to academic centers. Lengthy turnaround times for biomarkers can adversely affect outcomes. Traditional workflows involve moving specimens through multiple facilities. This study evaluates the feasibility of rapid comprehensive NGS using the Genexus integrated sequencer and a novel streamlined workflow in a community setting. Methods: A retrospective chart review was performed to assess the early experience and performance characteristics of a novel approach to biomarker testing at a large community center. This approach to NGS included an automated workflow utilizing the Genexus integrated sequencer, validated for clinical use. NGS testing was further integrated within a routine immunohistochemistry (IHC) service, utilizing histotechnologists to perform technical aspects of NGS, with results reported directly by anatomic pathologists. Results: Between October 2020 and October 2021, 578 solid tumor samples underwent genomic profiling. Median turnaround time for biomarker results was 3 business days (IQR: 2–5). Four hundred eighty-one (83%) of the cases were resulted in fewer than 5 business days, and 66 (11%) of the cases were resulted simultaneously with diagnosis. Tumor types included lung cancer (310), melanoma (97), and colorectal carcinoma (68), among others. NGS testing detected key driver alterations at expected prevalence rates: lung EGFR (16%), ALK (3%), RET (1%), melanoma BRAF (43%), colorectal RAS/RAF (67%), among others. Conclusion: This is the first study demonstrating clinical implementation of rapid NGS. This supports the feasibility of automated comprehensive NGS performed and interpreted in parallel with diagnostic histopathology and immunohistochemistry. This novel approach to biomarker testing offers considerable advantages to clinical cancer care
Primary Febrile Neutropenia Prophylaxis for Patients Who Receive FEC-D Chemotherapy for Breast Cancer: A Systematic Review
Purpose: Despite widespread use of fluorouracil, epirubicin, cyclophosphamide, docetaxel (FEC-D) chemotherapy in breast cancer, the optimal strategy for primary febrile neutropenia (FN) prophylaxis remains unknown. A systematic review was therefore performed. Methods: Embase, Ovid MEDLINE, PubMed, Cochrane Database of Systematic Reviews, Cochrane Register of Controlled Trials, and conference proceedings were searched from 1946 to April 2016 for trials that reported the effectiveness of primary FN prophylaxis with FEC-D chemotherapy. Outcome measures were incidence of FN; treatment-related hospitalizations; chemotherapy dose delays, reductions, and discontinuations; and adverse events from prophylaxis. Results: Of 2,205 identified citations, eight studies (n = 1,250) met our eligibility criteria. Three additional studies (n = 293) were identified from a prior systematic review. Three randomized controlled trials (n = 576), one phase IV single-arm trial (n = 69), one prospective observational study (n = 37), and six retrospective studies (n = 861) were identified. Agents investigated were pegfilgrastim (n = 108), filgrastim (n = 1,119), and ciprofloxacin (n = 89). The heterogeneity of studies meant that a narrative synthesis of results was performed. Median FN rates for patients who received FEC-D with and without primary prophylaxis were 10.1% (interquartile range [IQR], 3.9% to 22.6%) and 23.9% (IQR, 9.2% to 27.3%), respectively. In the absence of primary prophylaxis, FN was more common during docetaxel than during FEC. Data from six studies showed a median rate of dose reductions and delays of 6.1% (IQR, 3.1% to 14.3%) and 19.3% (IQR, 10.5% to 32.8%), respectively, that occurred as a consequence of FN. Toxicity from prophylaxis itself was rarely reported. Conclusion: Primary FN prophylaxis is effective in patients who receive FEC-D chemotherapy. The paucity of prospective data makes optimal recommendations about the choice and timing of prophylaxis challenging
A Guide to Implementing Immune Checkpoint Inhibitors within a Cancer Program: Experience from a Large Canadian Community Centre
The increased use of immune checkpoint inhibitors across cancer programs has created the need for standardized patient assessment, education, monitoring, and management of immune-related adverse events (irAEs). At William Osler Health System in Brampton, Ontario, a practical step-wise approach detailing the implementation of cancer immunotherapy in routine practice was developed. The approach focuses on four key steps: (1) identification of patient educators; (2) development of patient education materials; (3) development of patient monitoring tools; (4) involvement and education of multidisciplinary teams. Here, we provide an in-depth description of what was included in each step and how we integrated the different elements of the program. For each step, resources, tools, and materials that may be useful for patients, healthcare providers, and multidisciplinary teams were developed or modified based on existing materials. At our centre, the program led to improved patient comprehension of irAEs, the ability to act on symptoms (patient self-efficacy), and low rates of emergency room visits at first presentation for irAEs. We recognize that centres may need to tailor the approaches to their institutional policies and encourage centres to adapt and modify the forms and tools according to their needs and requirements
Upfront Next Generation Sequencing in Non-Small Cell Lung Cancer
In advanced non-small cell lung cancer (NSCLC), patients with actionable genomic alterations may derive additional clinical benefit from targeted treatment compared to cytotoxic chemotherapy. Current guidelines recommend extensive testing with next generation sequencing (NGS) panels. We investigated the impact of using a targeted NGS panel (TruSight Tumor 15, Illumina) as reflex testing for NSCLC samples at a single institution. Molecular analysis examined 15 genes for hotspot mutation variants, including AKT1, BRAF, EGFR, ERBB2, FOXL2, GNA11, GNAQ, KIT, KRAS, MET, NRAS, PDGFRA, PIK3CA, RET and TP53 genes. Between February 2017 and October 2020, 1460 samples from 1395 patients were analyzed. 1201 patients (86.1%) had at least one variant identified, most frequently TP53 (47.5%), KRAS (32.2%) or EGFR (24.2%). Among these, 994 patients (71.3%) had clinically relevant variants eligible for treatment with approved therapies or clinical trial enrollment. The incremental cost of NGS beyond single gene testing (EGFR, ALK) was CAD $233 per case. Reflex upfront NGS identified at least one actionable variant in more than 70% of patients with NSCLC, with minimal increase in testing cost. Implementation of NGS panels remains essential as treatment paradigms continue to evolve
Programmed Cell Death Protein 1 Inhibitors and MET Targeted Therapies in NSCLC With MET Exon 14 Skipping Mutations: Efficacy and Toxicity as Sequential Therapies
Introduction: NSCLC with MET exon 14 skipping mutation (METex14) is associated with poor outcomes. Integration of novel targeted therapies is challenging because of barriers in testing and drug access. We, therefore, sought to characterize the treatment patterns, outcomes, and emerging issues of treatment sequencing in patients with METex14-mutant NSCLC. Methods: We reviewed all NSCLC cases with METex14 alterations between 2014 and 2020 across four Canadian cancer centers. Demographics, disease characteristics, systemic therapy, overall response rates (ORRs), survival, and toxicity were summarized. Results: Among 64 patients with METex14-mutant NSCLC, the median overall survival was 23.1 months: 127.0 months in stage 1, 27.3 months in resected stage 2 and 3, and 16.6 months in unresectable stage 3 or 4 disease, respectively. In patients with advanced disease, 22% were too unwell for systemic treatment. MET tyrosine kinase inhibitors (TKIs) were administered to 28 patients with an ORR of 33%, median progression-free survival of 2.7 months, and 3.8 months for selective TKIs. Programmed cell death protein-1 (PD-1) inhibitors were given to 25 patients—the ORR was 44% and progression-free survival was 10.6 months. No responses were seen with subsequent MET TKIs after initial TKI treatment. Grade 3 or higher toxicities occurred in 64% of patients who received MET TKI after PD-1 inhibitors versus 8% in those who did not receive PD-1 inhibitors. Conclusions: Many patients with advanced METex14 NSCLC were too unwell to receive treatment. PD-1 inhibitors seem effective as an initial treatment, although greater toxicity was seen with subsequent MET TKIs. Thus, timely testing for METex14 skipping and initial therapy are imperative to improving patient survival