60 research outputs found

    Population genomic analysis reveals a rich speciation and demographic history of orang-utans (Pongo pygmaeus and Pongo abelii)

    Get PDF
    To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (~3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations.Publisher PDFPeer reviewe

    Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world.

    Get PDF
    BackgroundVaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries.MethodsTwenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios.ResultsWe estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases.ConclusionsThis study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future.FundingVIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication

    Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study.

    Get PDF
    BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation

    Estimating the health impact of vaccination against ten pathogens in 98 low-income and middle-income countries from 2000 to 2030: a modelling study.

    Get PDF
    BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation

    Estimation And Inference Of Random Effect Models With Applications To Population Genetics And Proteomics

    Full text link
    In this dissertation I present two methodologies for estimation and inference of random effect models with applications to population genetics and proteomics. The first methodology presented, SnIPRE, is designed for identifying genes under natural selection. SnIPRE is a "McDonald-Kreitman" type of analysis, in that it is based on MK table data and has an advantage over other types of statistics because it is robust to demography. Similar to the MKprf method, SnIPRE makes use of genome-wide information to increase power, but is nonparametric in the sense that it makes no assumptions (and does not require estimation) of parameters such as mutation rate and species divergence time in order to identify genes under selection. In simulations SnIPRE outperforms both the MK statistic and the two versions of MKprf considered. With the right assumptions SnIPRE may be used to estimate population parameters, and in chapter 3 we discuss the robustness of the method to the assumption of independent sites. I also propose a procedure for more precise estimation of the confidence bounds of the selection effect, and then apply our method to Drosophila and human-chimp comparison data. PROWLRE, an empirical Bayes method for analyzing shotgun-proteomics data, is introduced in the final chapter. While a fully Bayesian implementation of this model is straightforward, the empirical Bayes implementation is more challenging. I present an EM algorithm designed for fitting this latent variable model and then compare the results to the Bayesian estimation on simulated and synthetic data

    SnIPRE: selection inference using a Poisson random effects model.

    Get PDF
    We present an approach for identifying genes under natural selection using polymorphism and divergence data from synonymous and non-synonymous sites within genes. A generalized linear mixed model is used to model the genome-wide variability among categories of mutations and estimate its functional consequence. We demonstrate how the model's estimated fixed and random effects can be used to identify genes under selection. The parameter estimates from our generalized linear model can be transformed to yield population genetic parameter estimates for quantities including the average selection coefficient for new mutations at a locus, the synonymous and non-synynomous mutation rates, and species divergence times. Furthermore, our approach incorporates stochastic variation due to the evolutionary process and can be fit using standard statistical software. The model is fit in both the empirical Bayes and Bayesian settings using the lme4 package in R, and Markov chain Monte Carlo methods in WinBUGS. Using simulated data we compare our method to existing approaches for detecting genes under selection: the McDonald-Kreitman test, and two versions of the Poisson random field based method MKprf. Overall, we find our method universally outperforms existing methods for detecting genes subject to selection using polymorphism and divergence data

    False positive rate.

    No full text
    <p>False positive rate in a data set of 1000 genes simulated using the coalescent method.</p

    Realized coverage of 95% CI for and γ when , varies, and there is linkage among sites.

    No full text
    <p>Results for coalescent model simulations with a distribution on , and no selection . .</p

    True positive rate versus false discover rate.

    No full text
    <p>Results for data set of 2,000 genes, 550 of the genes are under selection with or .</p

    False positive rate and demography.

    No full text
    <p>False positive rates when no selection, and under various population growth models.</p
    corecore