6 research outputs found

    Treatment-Induced Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming of the Apoptotic Pathway

    Get PDF
    Eradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis. Pharmacological co-inhibition of YAP and TEAD, or genetic deletion of YAP1, all deplete dormant cells by enhancing EGFR/MEK inhibition-induced apoptosis. Enhancing the initial efficacy of targeted therapies could ultimately lead to prolonged treatment responses in cancer patients

    RhoC-GTPase is a Novel Tissue Biomarker Associated with Biologically Aggressive Carcinomas of the Breast

    Full text link
    Background. There is a need for reliable predictors of breast cancer aggressiveness that will further refine the staging classification and help guide the implementation of novel therapies. We have identified RhoC as being nearly always overexpressed in the most aggressive form of breast cancer, inflammatory breast cancer (IBC); in subsequent work we identified RhoC to be a promising marker of aggressive behavior in breast cancers less than 1 cm in diameter. We hypothesized that RhoC expression would identify aggressive, non-IBC tumors breast cancer patients at any stage with worse outcomes defined as recurrence and/or metastasis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44231/1/10549_2005_Article_4170.pd

    Rho-Regulatory Proteins in Breast Cancer Cell Motility and Invasion

    Full text link
    The importance of the Rho-GTPases in cancer progression, particularly in the area of metastasis, is becoming increasingly evident. This review will provide an overview of the role of the Rho-regulatory proteins in breast cancer metastatis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44220/1/10549_2004_Article_5264599.pd
    corecore