94 research outputs found

    Dynamic transitions and hysteresis

    Get PDF
    When an interacting many-body system, such as a magnet, is driven in time by an external perturbation, such as a magnetic field,the system cannot respond instantaneously due to relaxational delay. The response of such a system under a time-dependent field leads to many novel physical phenomena with intriguing physics and important technological applications. For oscillating fields, one obtains hysteresis that would not occur under quasistatic conditions in the presence of thermal fluctuations. Under some extreme conditions of the driving field, one can also obtain a non-zero average value of the variable undergoing such dynamic hysteresis. This non-zero value indicates a breaking of symmetry of the hysteresis loop, around the origin. Such a transition to the spontaneously broken symmetric phase occurs dynamically when the driving frequency of the field increases beyond its threshold value which depends on the field amplitude and the temperature. Similar dynamic transitions also occur for pulsed and stochastically varying fields. We present an overview of the ongoing researches in this not-so-old field of dynamic hysteresis and transitions.Comment: 30 Pages Revtex, 10 Postscript figures. To appear in Reviews of Modern Physics, April, 199

    Melanoma-associated adhesion molecule MUC18/MCAM (CD146) and transcriptional regulator Mader in normal human CNS

    Get PDF
    The proteins MUC18 and Mader have been identified as markers of tumor progression in melanoma cells, MUC18, also known as MCAM (melanoma cell adhesion molecule) and as CD146 (endothelial antigen), is a cell adhesion molecule belonging to the immunoglobulin superfamily, Mader is a transcriptional regulator shown to negatively regulate EGR-1. As it is known that neoplastic cells of neuroectodermal origin frequently express neuron-specific molecules, we studied whether these melanoma-associated antigens are found in normal CNS tissue. We investigated the expression of MUC18/MCAM and Mader in adult human post mortem CNS tissue by immunohistochemistry, immunoblot and two-dimensional gel electrophoresis. Our results show that Mader is preferentially expressed on neurons and glial cells and that the adhesion protein MUC18/MCAM is mainly expressed on vasculature within the CNS. These observations may have important implications for further studies investigating their possible roles in cell adhesion and proliferation control within the CNS

    A B Cell Receptor with Two Igα Cytoplasmic Domains Supports Development of Mature But Anergic B Cells

    Get PDF
    B cell receptor (BCR) signaling is mediated through immunoglobulin (Ig)α and Igβ a membrane-bound heterodimer. Igα and Igβ are redundant in their ability to support early B cell development, but their roles in mature B cells have not been defined. To examine the function of Igα–Igβ in mature B cells in vivo we exchanged the cytoplasmic domain of Igα for the cytoplasmic domain of Igβ by gene targeting (Igβc→αc mice). Igβc→αc B cells had lower levels of surface IgM and higher levels of BCR internalization than wild-type B cells. The mutant B cells were able to complete all stages of development and were long lived, but failed to differentiate into B1a cells. In addition, Igβc→αc B cells showed decreased proliferative and Ca2+ responses to BCR stimulation in vitro, and were anergic to T-independent and -dependent antigens in vivo

    Melanoma-associated adhesion molecule MUC18/MCAM (CD146) and transcriptional regulator Mader in normal human CNS

    Get PDF
    The proteins MUC18 and Mader have been identified as markers of tumor progression in melanoma cells, MUC18, also known as MCAM (melanoma cell adhesion molecule) and as CD146 (endothelial antigen), is a cell adhesion molecule belonging to the immunoglobulin superfamily, Mader is a transcriptional regulator shown to negatively regulate EGR-1. As it is known that neoplastic cells of neuroectodermal origin frequently express neuron-specific molecules, we studied whether these melanoma-associated antigens are found in normal CNS tissue. We investigated the expression of MUC18/MCAM and Mader in adult human post mortem CNS tissue by immunohistochemistry, immunoblot and two-dimensional gel electrophoresis. Our results show that Mader is preferentially expressed on neurons and glial cells and that the adhesion protein MUC18/MCAM is mainly expressed on vasculature within the CNS. These observations may have important implications for further studies investigating their possible roles in cell adhesion and proliferation control within the CNS

    Biochemical and transcriptomic evaluation of a 3D lung organoid platform for pre-clinical testing of active substances targeting senescence

    Get PDF
    Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicininduced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing

    Autophagy Protects From Uremic Vascular Media Calcification

    Get PDF
    Chronic kidney disease and diabetes mellitus are associated with extensive media calcification, which leads to increased cardiovascular morbidity and mortality. Here, we investigated the role of autophagy in the pathogenesis of uremic vascular media calcification. DBA/2 mice were fed with high-phosphate diet (HPD) in order to cause vascular calcification. DBA/2 mice on standard chow diet were used as control. In parallel, autophagy and its response to rapamycin, 3-methyladenine (3-MA), and bafilomycin were studied in an in vitro model using mouse vascular smooth muscle cells (MOVAS). DBA/2 mice on HPD developed severe vascular media calcification, which is mirrored in vitro by culturing MOVAS under calcifying conditions. Both, in vitro and in vivo, autophagy significantly increased in MOVAS under calcifying conditions and in aortas of HPD mice, respectively. Histologically, autophagy was located to the aortic Tunica media, but also vascular endothelial cells, and was found to continuously increase during HPD treatment. 3-MA as well as bafilomycin blocked autophagy in MOVAS and increased calcification. Vice versa, rapamycin treatment further increased autophagy and resulted in a significant decrease of vascular calcification in vitro and in vivo. Rapamycin reduced Runx2 transcription levels in aortas and MOVAS to control levels, whereas it increased α-smooth muscle actin and Sm22α transcription in MOVAS to control levels. Furthermore, rapamycin-treated HPD mice survived significantly longer compared to HPD controls. These findings indicate that autophagy is an endogenous response of vascular smooth muscle cells (VSMC) to protect from calcification in uremia. Induction of autophagy by rapamycin protects cells and mice from uremic media calcification possibly by inhibiting osteogenic transdifferentiation of VSMC

    Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions

    Get PDF
    One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake

    Infrared Spectroscopic Studies of Cells and Tissues: Triple Helix Proteins as a Potential Biomarker for Tumors

    Get PDF
    In this work, the infrared (IR) spectra of living neural cells in suspension, native brain tissue, and native brain tumor tissue were investigated. Methods were developed to overcome the strong IR signal of liquid water so that the signal from the cellular biochemicals could be seen. Measurements could be performed during surgeries, within minutes after resection. Comparison between normal tissue, different cell lineages in suspension, and tumors allowed preliminary assignments of IR bands to be made. The most dramatic difference between tissues and cells was found to be in weaker IR absorbances usually assigned to the triple helix of collagens. Triple helix domains are common in larger structural proteins, and are typically found in the extracellular matrix (ECM) of tissues. An algorithm to correct offsets and calculate the band heights and positions of these bands was developed, so the variance between identical measurements could be assessed. The initial results indicate the triple helix signal is surprisingly consistent between different individuals, and is altered in tumor tissues. Taken together, these preliminary investigations indicate this triple helix signal may be a reliable biomarker for a tumor-like microenvironment. Thus, this signal has potential to aid in the intra-operational delineation of brain tumor borders. © 2013 Stelling et al
    corecore