25 research outputs found

    Human Bocavirus in Infants, New Zealand

    Get PDF
    In 2005, a parvovirus, subsequently named human bocavirus (HBoV), was discovered in respiratory samples taken from infants and children hospitalized at Karolinksa University Hospital, Sweden, with lower respiratory tract infection. HBoV has since been identified in infants and children with respiratory illness in >17 countries, at frequencies ranging from 1.5% to >18.0%. This study reaffirms previous reports of finding HBoV in a subset of infants with bronchiolitis. It is also, to our knowledge, the first study of its kind in New Zealand infants, confirming wide distribution of HBoV. In the northern hemisphere, HBoV circulates primarily during the winter months, although it continues circulating until early summer, later than most other seasonal respiratory viruses. Therefore, this study may underestimate the percentage of New Zealand infants with bronchiolitis whose HBoV test results were positive because sample collection ceased in October (southern hemisphere spring) at the end of the bronchiolitis epidemic. The small number of HBoV-positive infants prevents conclusions concerning ethnicity, coinfection, and bronchiolitis severity

    Dendritic Cells Are Responsible for the Capacity of CpG Oligodeoxynucleotides to Act as an Adjuvant for Protective Vaccine Immunity Against Leishmania major in Mice

    Get PDF
    Vaccination with leishmanial Ag and CpG oligodeoxynucleotides (ODN) confers sustained cellular immunity and protection to infectious challenge up to 6 mo after immunization. To define the cellular mechanism by which CpG ODN mediate their adjuvant effects in vivo, the functional capacity of distinct dendritic cell (DC) subsets was assessed in the lymph nodes (LNs) of BALB/c mice, 36 h after immunization with the leishmanial antigen (LACK) and CpG ODN. After this immunization, there was a striking decrease in the frequency of the CD11c+B220+ plasmacytoid DCs with a proportionate increase in CD11c+CD8−B220− cells. CD11c+CD8+B220− cells were the most potent producers of interleukin (IL)-12 p70 and interferon (IFN)-γ, while plasmacytoid DCs were the only subset capable of secreting IFN-α. In terms of antigen presenting capacity, plasmacytoid DCs were far less efficient compared with the other DC subsets. To certify that DCs were responsible for effective vaccination, we isolated CD11c+ and CD11c− cells 36 h after immunization and used such cells to elicit protective immunity after adoptive transfer in naive, Leishmania major susceptible BALB/c mice. CD11c+ cells but not 10-fold higher numbers of CD11c− cells from such immunized mice mediated protection. Therefore, the combination of LACK antigen and CpG ODN adjuvant leads to the presence of CD11c+ DCs in the draining LN that are capable of vaccinating naive mice in the absence of further antigen or adjuvant

    Gr1int/high Cells Dominate the Early Phagocyte Response to Mycobacterial Lung Infection in Mice

    Get PDF
    Lung infection by Mycobacterium tuberculosis is characterized by chronic infection of lung-resident macrophages, long considered to be the primary hosts and determinants of the outcome of the early immune response. Although alveolar macrophages are well-known to host intracellular mycobacteria at later stages of disease, little is known about the earliest events of the innate immune response. The phagocytes that take up mycobacteria immediately following infection, and how the early lung phagocyte response is altered by vaccination with M. bovis bacille Calmette-Guérin (BCG) were unknown. Using BCG expressing the bright red fluorescent protein tdTomato and flow cytometry, we modeled early infection in C57BL/6 mice and tracked phagocyte population kinetics and uptake of mycobacteria, to better understand the involvement of specific phagocyte subsets. By 1 day post-infection, dose-dependent accumulation of neutrophils was observed and surprisingly, granulocytes comprised a greater proportion of infected phagocytes than alveolar macrophages. By 7 days post-infection alveolar macrophages had become the dominant BCG-associated phagocytes. Prior mucosal BCG exposure provided immunized mice with greater frequencies and numbers of lung macrophage subsets, and a significantly greater proportion of alveolar macrophages expressed CD11b prior to and following challenge infection. These data provide the first evidence of granulocytes as the dominant infected phagocyte subset early after mycobacterial infection, and highlight enhanced recruitment of lung macrophages as a factor associated with protection in BCG-immunized mice

    Langerin+ CD8α+ Dendritic Cells Drive Early CD8+ T Cell Activation and IL-12 Production During Systemic Bacterial Infection

    No full text
    Bloodstream infections induce considerable morbidity, high mortality, and represent a significant burden of cost in health care; however, our understanding of the immune response to bacteremia is incomplete. Langerin+ CD8α+ dendritic cells (DCs), residing in the marginal zone of the murine spleen, have the capacity to cross-prime CD8+ T cells and produce IL-12, both of which are important components of antimicrobial immunity. Accordingly, we hypothesized that this DC subset may be a key promoter of adaptive immune responses to blood-borne bacterial infections. Utilizing mice that express the diphtheria toxin receptor under control of the langerin promoter, we investigated the impact of depleting langerin+ CD8α+ DCs in a murine model of intravenous infection with Mycobacterium bovis bacille Calmette–Guerin (BCG). In the absence of langerin+ CD8α+ DCs, the immune response to blood-borne BCG infection was diminished: bacterial numbers in the spleen increased, serum IL-12p40 decreased, and delayed CD8+ T cell activation, proliferation, and IFN-γ production was evident. Our data revealed that langerin+ CD8α+ DCs play a pivotal role in initiating CD8+ T cell responses and IL-12 production in response to bacteremia and may influence the early control of systemic bacterial infections
    corecore