66 research outputs found

    Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh

    Get PDF
    This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events

    Geothermal Heat Recovery Complex: Large-Scale, Deep Direct-Use System in a Low-Temperature Sedimentary Basin

    Get PDF
    This feasibility study is the first assessment of geothermal resources in the Illinois Basin (ILB). The breadth of previous, geologic-based research in the ILB supported this thorough determination of geothermal resources in the Mt. Simon Sandstone (MSS) and the techno-economics of establishing a geothermal energy system (GES) at the University of Illinois at Urbana-Champaign (U of IL). An integrated, multi-disciplinary scientific and engineering approach allowed simulations for both the belowground and aboveground components of the GES that would meet the required baseload of 2 MMBtu/hr at the end-user agricultural research facilities (ARFs). This assessment contributes to the broader discussion surrounding the U of IL’s goal to achieve net-zero carbon emissions by 2050. Furthermore, a rigorous evaluation of the ILB’s geological, hydrological, and thermal frameworks facilitated a broader assessment of the feasibility of applying deep direct-use (DDU) technologies at facilities (e.g., military installations, hospitals, and school campuses) in other geographical areas in the ILB, and in other sedimentary basins in midcontinent of the US.U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office Award Number DE-EE0008106Ope

    The Role of Zinc in the Modulation of Neuronal Proliferation and Apoptosis

    Get PDF
    Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis

    ICOSL+ plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist

    Get PDF
    Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Organisms in experimental research

    Get PDF
    Rachel A. Ankeny and Sabina Leonell

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore