5,021 research outputs found

    Evaluation of dry lubricants and bearings for spacecraft applications

    Get PDF
    Performance of dry film lubricated ball bearings in high vacuum environmen

    Density Expansion for the Mobility in a Quantum Lorentz Model

    Full text link
    We consider the mobility of electrons in an environment of static hard-sphere scatterers, which provides a realistic description of electrons in Helium gas. A systematic expansion in the scatterer density is carried to second order relative to the Boltzmann result, and the analytic contribution at this order is derived, together with the known logarithmic term in the density expansion. It is shown that existing experimental data are consistent with the existence of the logarithmic term in the density expansion, but more precise experiments are needed in order to unambiguously detect it. We show that our calculations provide the necessary theoretical information for such an experiment, and give a detailed discussion of a suitable parameter range.Comment: 17pp., REVTeX, 7 figure attached as 8 postscript files, db/94/

    Keck Imaging of Binary L Dwarfs

    Get PDF
    We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ratios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for publication in the Letters of the Astrophysical Journal; Postscript pre-print version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p

    Theory of Disordered Itinerant Ferromagnets I: Metallic Phase

    Full text link
    A comprehensive theory for electronic transport in itinerant ferromagnets is developed. We first show that the Q-field theory used previously to describe a disordered Fermi liquid also has a saddle-point solution that describes a ferromagnet in a disordered Stoner approximation. We calculate transport coefficients and thermodynamic susceptibilities by expanding about the saddle point to Gaussian order. At this level, the theory generalizes previous RPA-type theories by including quenched disorder. We then study soft-mode effects in the ferromagnetic state in a one-loop approximation. In three-dimensions, we find that the spin waves induce a square-root frequency dependence of the conductivity, but not of the density of states, that is qualitatively the same as the usual weak-localization effect induced by the diffusive soft modes. In contrast to the weak-localization anomaly, this effect persists also at nonzero temperatures. In two-dimensions, however, the spin waves do not lead to a logarithmic frequency dependence. This explains experimental observations in thin ferromagnetic films, and it provides a basis for the construction of a simple effective field theory for the transition from a ferromagnetic metal to a ferromagnetic insulator.Comment: 15pp., REVTeX, 2 eps figs, final version as publishe

    Phase-ordering dynamics in itinerant quantum ferromagnets

    Full text link
    The phase-ordering dynamics that result from domain coarsening are considered for itinerant quantum ferromagnets. The fluctuation effects that invalidate the Hertz theory of the quantum phase transition also affect the phase ordering. For a quench into the ordered phase a transient regime appears, where the domain growth follows a different power law than in the classical case, and for asymptotically long times the prefactor of the t^{1/2} growth law has an anomalous magnetization dependence. A quench to the quantum critical point results in a growth law that is not a power-law function of time. Both phenomenological scaling arguments and renormalization-group arguments are given to derive these results, and estimates of experimentally relevant length and time scales are presented.Comment: 6pp., 1 eps fig, slightly expanded versio

    Tricritical behavior in itinerant quantum ferromagnets

    Full text link
    It is shown that the peculiar features observed in the low-temperature phase diagrams of ZrZn_2, UGe_2, and MnSi can be understood in terms of a simple mean-field theory. The nature of the ferromagnetic transition changes from second order to first order at a tricritical point, and in a small external magnetic field surfaces of first-order transitions emerge which terminate in quantum critical points. This field dependence of the phase diagram follows directly from the existence of the tricritical point. The quantum critical behavior in a nonzero field is calculated exactly.Comment: 4pp., 4 eps figure

    Density expansion for transport coefficients: Long-wavelength versus Fermi surface nonanalyticities

    Get PDF
    The expansion of the conductivity in 2-d quantum Lorentz models in terms of the scatterer density n is considered. We show that nonanalyticities in the density expansion due to scattering processes with small and large momentum transfers, respectively, have different functional forms. Some of the latter are not logarithmic, but rather of power-law nature, in sharp contrast to the 3-d case. In a 2-d model with point-like scatterers we find that the leading nonanalytic correction to the Boltzmann conductivity, apart from the frequency dependent weak-localization term, is of order n^{3/2}.Comment: 4 pp., REVTeX, epsf, 3 eps figs, final version as publishe

    Microscopic Theory of Heterogeneity and Non-Exponential Relaxations in Supercooled Liquids

    Full text link
    Recent experiments and computer simulations show that supercooled liquids around the glass transition temperature are "dynamically heterogeneous" [1]. Such heterogeneity is expected from the random first order transition theory of the glass transition. Using a microscopic approach based on this theory, we derive a relation between the departure from Debye relaxation as characterized by the β\beta value of a stretched exponential response function ϕ(t)=e−(t/τKWW)β\phi(t) =e^{-(t/ \tau_{KWW})^{\beta}}, and the fragility of the liquid. The β\beta value is also predicted to depend on temperature and to vanish as the ideal glass transition is approached at the Kauzmann temperature.Comment: 4 pages including 3 eps figure
    • …
    corecore