670 research outputs found
Recommended from our members
Earthquake slip surfaces identified by biomarker thermal maturity within the 2011 Tohoku-Oki earthquake fault zone.
Extreme slip at shallow depths on subduction zone faults is a primary contributor to tsunami generation by earthquakes. Improving earthquake and tsunami risk assessment requires understanding the material and structural conditions that favor earthquake propagation to the trench. We use new biomarker thermal maturity indicators to identify seismic faults in drill core recovered from the Japan Trench subduction zone, which hosted 50 m of shallow slip during the Mw9.1 2011 Tohoku-Oki earthquake. Our results show that multiple faults have hosted earthquakes with displacement ≥ 10 m, and each could have hosted many great earthquakes, illustrating an extensive history of great earthquake seismicity that caused large shallow slip. We find that lithologic contrasts in frictional properties do not necessarily determine the likelihood of large shallow slip or seismic hazard
Three newly-discovered M-dwarf companions of Solar Neighbourhood stars
We present low-resolution spectroscopy of newly-discovered candidate
companions to three stars in the Solar Neighbourhood. All three companions are
M dwarfs, with spectral types ranging from M4 to M9.5. In two cases, G85-55`B'
(M6) and G87-9`B' (M4), we have circumstantial evidence from spectroscopy,
photometry and limited astrometry that the systems are physical binaries; in
the third, G216-7B (M9.5), comparison of POSS II IIIaF plate material and the
2MASS image indicates common proper motion. The primary star in this system,
G216-7A (M0), appears itself to be an unresolved, nearly equal-mass binary. All
three low-mass companions are highly likely to be stellar in nature, although
G216-7B lies very close to the hydrogen-burning limit.Comment: Accepted for publication in PASP; 21 pages, 6 figure
Geological constraints on the mechanisms of slow earthquakes
The recognition of slow earthquakes in geodetic and seismological data has transformed the understanding of how plate motions are accommodated at major plate boundaries. Slow earthquakes, which slip more slowly than regular earthquakes but faster than plate motion velocities, occur in a range of tectonic and metamorphic settings. They exhibit spatiotemporal associations with large seismic events that indicate a causal relation between modes of slip at different slip rates. Defining the physical controls on slow earthquakes is, therefore, critical for understanding fault and shear zone mechanics. In this Review, we synthesize geological observations of a suite of ancient structures that were active in tectonic settings comparable to where slow earthquakes are observed today. At inferred slow earthquake regions, a range of grain-scale deformation mechanisms accommodated slip at low effective stresses. Material heterogeneity and the geometric complexity of structures that formed at different inferred strain rates are common to faults and shear zones in multiple tectonic environments, and might represent key limiting factors of slow earthquake slip rates. Further geological work is needed to resolve how the spectrum of slow earthquake slip rates can arise from different grain-scale deformation mechanisms and whether there is one universal rate-limiting mechanism that defines slow earthquake slip
Seafood prices reveal impacts of a major ecological disturbance
Coastal hypoxia (dissolved oxygen ≤ 2 mg/L) is a growing problem worldwide that threatens marine ecosystem services, but little is known about economic effects on fisheries. Here, we provide evidence that hypoxia causes economic impacts on a major fishery. Ecological studies of hypoxia and marine fauna suggest multiple mechanisms through which hypoxia can skew a population’s size distribution toward smaller individuals. These mechanisms produce sharp predictions about changes in seafood markets. Hypoxia is hypothesized to decrease the quantity of large shrimp relative to small shrimp and increase the price of large shrimp relative to small shrimp. We test these hypotheses using time series of size-based prices. Naive quantity-based models using treatment/control comparisons in hypoxic and nonhypoxic areas produce null results, but we find strong evidence of the hypothesized effects in the relative prices: Hypoxia increases the relative price of large shrimp compared with small shrimp. The effects of fuel prices provide supporting evidence. Empirical models of fishing effort and bioeconomic simulations explain why quantifying effects of hypoxia on fisheries using quantity data has been inconclusive. Specifically, spatial-dynamic feedbacks across the natural system (the fish stock) and human system (the mobile fishing fleet) confound “treated” and “control” areas. Consequently, analyses of price data, which rely on a market counterfactual, are able to reveal effects of the ecological disturbance that are obscured in quantity data. Our results are an important step toward quantifying the economic value of reduced upstream nutrient loading in the Mississippi Basin and are broadly applicable to other coupled human-natural systems.publishedVersio
Hubble Space Telescope NICMOS Observations of T Dwarfs: Brown Dwarf Multiplicity and New Probes of the L/T Transition
We present the results of a Hubble Space Telescope NICMOS imaging survey of
22 T-type field brown dwarfs. Five are resolved as binary systems with angular
separations of 0"05-0"35, and companionship is established on the basis of
component F110W-F170M colors (indicative of CH4 absorption) and low
probabilities of background contamination. Prior ground-based observations show
2MASS 1553+1532AB to be a common proper motion binary. The properties of these
systems - low multiplicity fraction (11[+7][-3]% resolved, as corrected for
sample selection baises), close projected separations (a = 1.8-5.0 AU) and
near-unity mass ratios - are consistent with previous results for field brown
dwarf binaries. Three of the binaries have components that span the
poorly-understood transition between L dwarfs and T dwarfs. Spectral
decomposition analysis of one of these, SDSS 1021-0304AB, reveals a peculiar
flux reversal between its components, as its T5 secondary is ~30% brighter at
1.05 and 1.27 micron than its T1 primary. This system, 2MASS 0518-2828AB and
SDSS 1534+1615AB all demonstrate that the J-band brightening observed between
late-type L to mid-type T dwarfs is an intrinsic feature of this spectral
transition, albeit less pronounced than previously surmised. We also find that
the resolved binary fraction of L7 to T3.5 dwarfs is twice that of other L and
T dwarfs, an anomaly that can be explained by a relatively rapid evolution of
brown dwarfs through the L/T transition, perhaps driven by dynamic
(nonequilibrium) depletion of photospheric condensates.Comment: ~40 pages, 17 figures, accepted for publication to ApJ. Note that
emulateapj style file cuts off part of Table
Long-Ranged Correlations in Sheared Fluids
The presence of long-ranged correlations in a fluid undergoing uniform shear
flow is investigated. An exact relation between the density autocorrelation
function and the density-mometum correlation function implies that the former
must decay more rapidly than , in contrast to predictions of simple mode
coupling theory. Analytic and numerical evaluation of a non-perturbative
mode-coupling model confirms a crossover from behavior at ''small''
to a stronger asymptotic power-law decay. The characteristic length scale is
where is the sound damping
constant and is the shear rate.Comment: 15 pages, 2 figures. Submitted to PR
Spitzer Infrared Spectrograph Observations of M, L, and T Dwarfs
We present the first mid-infrared spectra of brown dwarfs, together with
observations of a low-mass star. Our targets are the M3.5 dwarf GJ 1001A, the
L8 dwarf DENIS-P J0255-4700, and the T1/T6 binary system epsilon Indi Ba/Bb. As
expected, the mid-infrared spectral morphology of these objects changes rapidly
with spectral class due to the changes in atmospheric chemistry resulting from
their differing effective temperatures and atmospheric structures. By taking
advantage of the unprecedented sensitivity of the Infrared Spectrograph on the
Spitzer Space Telescope we have detected the 7.8 micron methane and 10 micron
ammonia bands for the first time in brown dwarf spectra.Comment: 4 pages, 2 figure
Crawford, Davis & the Right of Confrontation: Where Do We Go from Here?
Afternoon Panel Discussio
- …