155 research outputs found

    Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy

    Get PDF
    Recent literature, the US Global Change Research Program’s National Climate Assessment, and recent events, such as Hurricane Sandy, highlight the need to take better account of both storm surge and sea-level rise (SLR) in assessing coastal risks of climate change. This study combines three models—a tropical cyclone simulation model; a storm surge model; and a model for economic impact and adaptation—to estimate the joint effects of storm surge and SLR for the US coast through 2100. The model is tested using multiple SLR scenarios, including those incorporating estimates of dynamic ice-sheet melting, two global greenhouse gas (GHG) mitigation policy scenarios, and multiple general circulation model climate sensitivities. The results illustrate that a large area of coastal land and property is at risk of damage from storm surge today; that land area and economic value at risk expands over time as seas rise and as storms become more intense; that adaptation is a cost-effective response to this risk, but residual impacts remain after adaptation measures are in place; that incorporating site-specific episodic storm surge increases national damage estimates by a factor of two relative to SLR-only estimates, with greater impact on the East and Gulf coasts; and that mitigation of GHGs contributes to significant lessening of damages. For a mid-range climate-sensitivity scenario that incorporates dynamic ice sheet melting, the approach yields national estimates of the impacts of storm surge and SLR of 990billionthrough2100(netofadaptation,cumulativeundiscounted2005990 billion through 2100 (net of adaptation, cumulative undiscounted 2005); GHG mitigation policy reduces the impacts of the mid-range climate-sensitivity estimates by 84to84 to 100 billion.United States. Environmental Protection Agency. Climate Change Division (Contract EP-D-09-054)United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0024

    Predictive ethoinformatics reveals the complex migratory behaviour of a pelagic seabird, the Manx Shearwater

    Get PDF
    Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover

    INCITS W1.1 Standards for Perceptual Evaluation of Text and Line Quality

    Get PDF
    INCITS W1.1 is a project chartered to develop an appearance-based image quality standard. This paper summarizes the work to date of the W1.1 Text and Line Quality ad hoc team, and describes the progress made in developing a Text Quality test pattern and an analysis procedure based on experience with previous perceptual rating experiments

    Dynamic Volunteer Engagement and Impactful Educational Outreach Taking Us into the Next 50 Years of the Extension Master Gardener Program

    Get PDF
    According to the 2021 Extension Master Gardener (EMG) National Summary, the EMG Volunteer Program had an estimated 84,700 volunteers throughout the United States. These volunteers helped communities garden and grow food, provided opportunities to engage in activities that improved physical and mental health, and worked on projects that addressed environmental issues. In total, these programs contributed 3.1 million hours of education to local communities and $88 million dollars in value to the public. However, the COVID-19 pandemic presented challenges for the program, with many states implementing reduced requirements and increased flexibility for volunteers. The workshop “Dynamic Volunteer Engagement and Impactful Educational Outreach Taking Us Into the Next 50 Years of the EMG Program” at the 2022 ASHS conference discussed how to engage EMG volunteers despite the limitations of limited in-person contact. The workshop featured three Extension educators and EMG coordinators who shared their experiences and strategies for engaging volunteers during the pandemic. Topics discussed included engaging volunteers in local food systems and community gardens, engaging students in horticulture at an earlier age, and digital volunteer opportunities. Overall, the workshop provided valuable insights and facilitated discussions on how to adapt and continue the EMG program during challenging times

    Combined mutation screening of NKX2-5, GATA4, and TBX5 in congenital heart disease: multiple heterozygosity and novel mutations

    Get PDF
    Background: Variants of several genes encoding transcription modulators, signal transduction, and structural proteins are known to cause Mendelian congenital heart disease (CHD). NKX2-5 and GATA4 were the first CHD-causing genes identified by linkage analysis in large affected families. Mutations of TBX5 cause Holt–Oram syndrome, which includes CHD as a clinical feature. All three genes have a well-established role in cardiac development. Design: In order to investigate the possible role of multiple mutations in CHD, a combined mutation screening was performed in NKX2-5, GATA4, and TBX5 in the same patient cohort. Samples from a cohort of 331 CHD patients were analyzed by polymerase chain reaction, double high-performance liquid chromatography and sequencing in order to identify changes in the NKX2-5, GATA4, and TBX5 genes. Results: Two cases of multiple heterozygosity of putative disease-causing mutations were identified. One patient was found with a novel L122P NKX2-5 mutation in combination with the private A1443D mutation of MYH6. A patient heterozygote for a D425N GATA4 mutation carries also a private mutation of the MYH6 gene (V700M). Conclusions: In addition to reporting two novel mutations of NKX2-5 in CHD, we describe families where multiple individual mutations seem to have an additive effect over the pathogenesis of CHD. Our findings highlight the usefulness of multiple gene mutational analysis of large CHD cohorts

    Identification of a Human Monoclonal Antibody to Replace Equine Diphtheria Anti-toxin for the Treatment of Diphtheria

    Get PDF
    Diphtheria anti-toxin (DAT) has been used to treat Corynebacterium diphtheriae infection for over one hundred years. While the global incidence of diphtheria has declined in the 20th century, the disease remains endemic in many parts of the world and significant outbreaks still occur. Diphtheria anti-toxin is an equine polyclonal antibody with considerable side effects that is in critically short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we cloned human monoclonal antibodies (HuMabs) directly from antibody secreting cells of human volunteers immunized with Td vaccine. We isolated a diverse panel of HuMabs that recognized diphtheria toxoid and recombinant protein fragments of diphtheria toxin. Forty-one unique HuMabs were expressed in 293T cells and tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays. The lead candidate HuMab, 315C4 potently neutralized diphtheria toxin with an EC50 of 0.65 ng/mL. Additionally, 25 ÎŒg of 315C4 completely protected guinea pigs in an in vivo lethality model. In comparison, 1.6 IU of DAT was necessary for full protection resulting in an estimated relative potency of 64 IU/mg for 315C4. We further established that our lead candidate HuMab binds to the receptor binding domain of diphtheria toxin and blocks the toxin from binding to the putative receptor, heparin binding-epidermal growth factor like growth factor. The discovery of a specific and potent neutralizing antibody against diphtheria toxin holds promise as a potential human therapeutic and is being developed for human use

    Fungal entomopathogens: new insights on their ecology

    Get PDF
    An important mechanism for insect pest control should be the use of fungal entomopathogens. Even though these organisms have been studied for more than 100 y, their effective use in the field remains elusive. Recently, however, it has been discovered that many of these entomopathogenic fungi play additional roles in nature. They are endophytes, antagonists of plant pathogens, associates with the rhizosphere, and possibly even plant growth promoting agents. These findings indicate that the ecological role of these fungi in the environment is not fully understood and limits our ability to employ them successfully for pest management. In this paper, we review the recently discovered roles played by many entomopathogenic fungi and propose new research strategies focused on alternate uses for these fungi. It seems likely that these agents can be used in multiple roles in protecting plants from pests and diseases and at the same time promoting plant growth
    • 

    corecore