110 research outputs found
Remarkable Mechanochromism in Blends of a π-Conjugated Polymer P3TEOT: The Role of Conformational Transitions and Aggregation
A novel mechanism for well-pronounced mechanochromism in blends of a π-conjugated polymer based on reversible conformational transitions of a chromophore rather than caused by its aggregation state, is exemplified. Particularly, a strong stretching-induced bathochromic shift of the light absorption, or hypsochromic shift of the emission, is found in blends of the water-soluble poly(3-tri(ethylene glycol)) (P3TEOT) embedded into the matrix of thermoplastic polyvinyl alcohol. This counterintuitive phenomenon is explained in terms of the concentration dependency of the P3TEOT's aggregation state, which in turn results in different molecular conformations and optical properties. A molecular flexibility, provided by low glass transition temperature of P3TEOT, and the fact that P3TEOT adopts an intermediate, moderately planar conformation in the solid state, are responsible for the unusual complex mechanochromic behavior. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimRussian Foundation for Basic Research, RFBR: 18-03-00715Volkswagen FoundationDeutsche Forschungsgemeinschaft, DFG: KI-1094/9-1J.Z. and M.S. contributed equally to the work. The authors gratefully acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) (Grant KI-1094/9-1) and cfaed (ExInI). T.B. gratefully acknowledges financial support by the Russian Foundation for Basic Research (Project 18-03-00715). This project is financially supported by the Volkswagen Foundation through a Freigeist Fellowship to T.A.F.K. The authors acknowledge the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ?Center for Advancing Electronics Dresden? (cfaed) for financial support
Deciphering the origin and therapeutic targets of cancer of unknown primary: a case report that illustrates the power of integrative whole-exome and transcriptome sequencing analysis
Cancer of unknown primary (CUP) represents a significant diagnostic and therapeutic challenge, being the third to fourth leading cause of cancer death, despite advances in diagnostic tools. This article presents a successful approach using a novel genomic analysis in the evaluation and treatment of a CUP patient, leveraging whole-exome sequencing (WES) and RNA sequencing (RNA-seq). The patient, with a history of multiple primary tumors including urothelial cancer, exhibited a history of rapid progression on empirical chemotherapy. The application of our approach identified a molecular target, characterized the tumor expression profile and the tumor microenvironment, and analyzed the origin of the tumor, leading to a tailored treatment. This resulted in a substantial radiological response across all metastatic sites and the predicted primary site of the tumor. We argue that a comprehensive genomic and molecular profiling approach, like the BostonGene© Tumor Portrait, can provide a more definitive, personalized treatment strategy, overcoming the limitations of current predictive assays. This approach offers a potential solution to an unmet clinical need for a standardized approach in identifying the tumor origin for the effective management of CUP
Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium
On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.National Science Foundation (U.S.) (DMR-1507806
Ring walking versus trapping of nickel(0) during kumada catalyst transfer polycondensation using externally initiated electron-accepting thiophene-benzothiadiazole-thiophene precursors
Contains fulltext :
92279.pdf (publisher's version ) (Open Access)9 p
Palladium wire-shaped nanoparticles from single synthetic polycation molecules
Here we described simple chemical route to fabricate wire-shaped metallic nanoparticles of about 5 nm in a diameter and of 1000 nm in a length from single synthetic polycations. The preparation is based on the deposition of Pd-clusters on single poly(methacryloyloxyethyl dimethylbenzylammonium chloride) molecules adsorbed on Si-wafers from aqueous solution. The length and the diameter of nanowires are determined by the length and the diameter of the underlying polymer chains
- …