11 research outputs found
Epigenetic reprogramming driving successful and failed repair in acute kidney injury
Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI
CellTag Indexing: Genetic barcode-based sample multiplexing for single-cell genomics
High-throughput single-cell assays increasingly require special consideration in experimental design, sample multiplexing, batch effect removal, and data interpretation. Here, we describe a lentiviral barcode-based multiplexing approach, CellTag Indexing, which uses predefined genetic barcodes that are heritable, enabling cell populations to be tagged, pooled, and tracked over time in the same experimental replicate. We demonstrate the utility of CellTag Indexing by sequencing transcriptomes using a variety of cell types, including long-term tracking of cell engraftment and differentiation in vivo. Together, this presents CellTag Indexing as a broadly applicable genetic multiplexing tool that is complementary with existing single-cell technologies
Cumulative DNA damage by repeated low-dose cisplatin injection promotes the transition of acute to chronic kidney injury in mice
Cisplatin is a commonly used anticancer drug, but nephrotoxicity is a dose-limiting adverse effect. Recent experimental and clinical observations have demonstrated that multiple injections of cisplatin induce the transition to chronic kidney disease; however, the underlying mechanisms remain unclear. We found that multiple injections of higher doses of cisplatin in a shorter interval affected the severity of kidney injury, causing kidney fibrosis to develop at a later time point. An additional injection of cisplatin during the recovery period after a prior injury, when proximal tubule epithelia are actively proliferating, induced substantial tubular injury by inducing more severe DNA damage than that induced by a single injection. Lineage tracing analysis of proximal tubular epithelia demonstrated that the tubular epithelia that underwent multiple rounds of cell division after multiple injections of cisplatin existed at the chronic phase, and these populations often expressed vcam1 + , suggesting the induction of proinflammatory failed-repair tubular epithelia. Our study revealed that as cisplatin exerts cytotoxic effects on actively proliferating cells, additional cisplatin injections before the completion of tubular repair exacerbates kidney injury through cumulative DNA damage. Appropriate both the setting of dosage and dosing intervals, with careful monitoring, are essential to prevent nephrotoxicity of repeated cisplatin treatment in cancer patients
An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis
SpCas9 and AsCas12a are widely utilized as genome-editing tools in human cells. However, their relatively large size poses a limitation for delivery by cargo-size-limited adeno-associated virus (AAV) vectors. The type V-F Cas12f from Acidibacillus sulfuroxidans is exceptionally compact (422 amino acids) and has been harnessed as a compact genome-editing tool. Here, we developed an approach, combining deep mutational scanning and structure-informed design, to successfully generate two AsCas12f activity-enhanced (enAsCas12f) variants. Remarkably, the enAsCas12f variants exhibited genome-editing activities in human cells comparable with those of SpCas9 and AsCas12a. The cryoelectron microscopy (cryo-EM) structures revealed that the mutations stabilize the dimer formation and reinforce interactions with nucleic acids to enhance their DNA cleavage activities. Moreover, enAsCas12f packaged with partner genes in an all-in-one AAV vector exhibited efficient knock-in/knock-out activities and transcriptional activation in mice. Taken together, enAsCas12f variants could offer a minimal genome-editing platform for in vivo gene therapy