8 research outputs found

    Influence of the site of small bowel resection on intestinal epithelial cell apoptosis

    Full text link
    Massive small bowel resection (SBR) results in a significant increase in intestinal epithelial cell (EC) proliferation as well as apoptosis. Because the site of SBR (proximal (P) vs. distal (D)) affects the degree of intestinal adaptation, we hypothesized that different rates of EC apoptosis would also be found between P-SBR and D-SBR models. Wild-type C57BL/6J mice underwent: (1) 60% P-SBR, (2) 60% D-SBR, or (3) SHAM-operation (transaction–reanastomosis) at the mid-gut point. Mice were sacrificed after 7 days. EC apoptosis was measured by TUNEL staining. EC-related apoptotic gene expression including intrinsic and extrinsic pathways was measured with reverse transcriptase-polymerase chain reaction. Bcl-2 and bax protein expression were analyzed by Western immunobloting. Both models of SBR led to significant increases in villus height and crypt depth; however, the morphologic adaptation was significantly higher after P-SBR compared to D-SBR ( P <0.01). Both models of SBR led to significant increases in enterocyte apoptotic rates compared to respective sham levels; however, apoptotic rates were 2.5-fold higher in ileal compared to jejunal segments ( P <0.01). P-SBR led to significant increases in bax (pro-apoptotic) and Fas expression, whereas D-SBR resulted in a significant increase in TNF-α expression ( P <0.01). EC apoptosis seems to be an important component of intestinal adaptation. The significant difference in EC apoptotic rates between proximal and distal intestinal segments appeared to be due to utilization of different mechanisms of action.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47176/1/383_2005_Article_1576.pd

    Intestinal intraepithelial lymphocyte derived angiotensin converting enzyme modulates epithelial cell apoptosis

    Full text link
    Background & Aims : Intestinal adaptation in short bowel syndrome (SBS) consists of increased epithelial cell (EC) proliferation as well as apoptosis. Previous microarray analyses of intraepithelial lymphocytes (IEL) gene expression after SBS showed an increased expression of angiotensin converting enzyme (ACE). Because ACE has been shown to promote alveolar EC apoptosis, we examined if IEL-derived ACE plays a role in intestinal EC apoptosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44361/1/10495_2005_Article_2138.pd

    Glutamine Prevents Total Parenteral Nutrition-Associated Changes to Intraepithelial Lymphocyte Phenotype and Function: A Potential Mechanism for the Preservation of Epithelial Barrier Function

    Full text link
    Total parenteral nutrition (TPN) results in a number of derangements to the intestinal epithelium, including a loss of epithelial barrier function (EBF). As TPN supplemented with glutamine has been thought to prevent this loss, this article further defined the impact of glutamine on EBF, and investigated potential mechanisms that contributed to the preservation of EBF. C57BL/6J male mice were randomized to enteral nutrition (control), TPN, or TPN supplemented with glutamine (TPN+GLN). Changes in intraepithelial lymphocyte (IEL)-derived cytokine expression were measured, and EBF was assessed with electrophysiologic methods and assessment of junctional protein expression. TPN resulted in a significant decline in EBF, and this loss of EBF was significantly prevented in the TPN+GLN group. Coincident with these changes was a loss of intraepithelial lymphocyte (IEL, mucosal lymphocyte)-derived IL-10 and increase in interferon-? (IFN-?) expression, and a decline in IEL numbers in the TPN group. A prevention in the increase in IFN-? and decline in IL-10 expression was seen in the TPN+GLN group. To determine the mechanism responsible for these glutamine-associated cytokine changes, we tested whether blockade of the IL-7 signaling pathway between epithelial cells (EC) and IEL would prevent these changes; however, blockade failed to influence IEL-derived cytokine changes. Glutamine-supplemented TPN leads to a specific IEL-derived cytokine profile, which may account for the preservation of EBF; and such action may be due to a direct action of glutamine on the IEL.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85114/1/jir_2009_0046.pd
    corecore