29 research outputs found

    Dynamic Reconfiguration of the Supplementary Motor Area Network during Imagined Music Performance

    No full text
    The supplementary motor area (SMA) has been shown to be the center for motor planning and is active during music listening and performance. However, limited data exist on the role of the SMA in music. Music performance requires complex information processing in auditory, visual, spatial, emotional, and motor domains, and this information is integrated for the performance. We hypothesized that the SMA is engaged in multimodal integration of information, distributed across several regions of the brain to prepare for ongoing music performance. To test this hypothesis, functional networks involving the SMA were extracted from functional magnetic resonance imaging (fMRI) data that were acquired from musicians during imagined music performance and during the resting state. Compared with the resting condition, imagined music performance increased connectivity of the SMA with widespread regions in the brain including the sensorimotor cortices, parietal cortex, posterior temporal cortex, occipital cortex, and inferior and dorsolateral prefrontal cortex. Increased connectivity of the SMA with the dorsolateral prefrontal cortex suggests that the SMA is under cognitive control, while increased connectivity with the inferior prefrontal cortex suggests the involvement of syntax processing. Increased connectivity with the parietal cortex, posterior temporal cortex, and occipital cortex is likely for the integration of spatial, emotional, and visual information. Finally, increased connectivity with the sensorimotor cortices was potentially involved with the translation of thought planning into motor programs. Therefore, the reconfiguration of the SMA network observed in this study is considered to reflect the multimodal integration required for imagined and actual music performance. We propose that the SMA network construct “the internal representation of music performance” by integrating multimodal information required for the performance

    Efficacy and Tolerability of Pharmacotherapy Options for the Treatment of Irritability in Autistic Children

    No full text
    Children with autism have a high rate of irritability and aggressive symptoms. Irritability or self-injurious behavior can result in significant harm to those affected, as well as to marked distress for their families. This paper provides a literature review regarding the efficacy and tolerability of pharmacotherapy for the treatment of irritability in autistic children. Although antipsychotics have not yet been approved for the treatment of autistic children by many countries, they are often used to reduce symptoms of behavioral problems, including irritability, aggression, hyperactivity, and panic. However, among antipsychotics, the Food and Drug Administration has approved only risperidone and aripiprazole to treat irritability in autism. Among atypical antipsychotics, olanzapine and quetiapine are limited in their use for autism spectrum disorders in children because of high incidences of weight gain and sedation. In comparison, aripiprazole and ziprasidone cause less weight gain and sedation. However, potential QTc interval prolongation with ziprasidone has been reported. Contrary to ziprasidone, no changes were evident in the QT interval in any of the trials for aripiprazole. However, head-to-head comparison studies are needed to support that aripiprazole may be a promising drug that can be used to treat irritability in autistic children. On the other hand, risperidone has the greatest amount of evidence supporting it, including randomized controlled trials; thus, its efficacy and tolerability has been established in comparison with other agents. Further studies with risperidone as a control drug are needed

    Serum prolactin levels and sexual dysfunction in patients with schizophrenia treated with antipsychotics: comparison between aripiprazole and other atypical antipsychotics

    No full text
    Abstract Objectives Antipsychotics, even atypical ones, can induce hyperprolactinemia. Aripiprazole (APZ), a dopamine D2 partial agonist, has a unique pharmacological profile and few side effects. We investigated the incidence of hyperprolactinemia in patients with schizophrenia treated with APZ and other antipsychotics. Methods Serum prolactin levels were measured by ELISA (enzyme-linked immunosorbent assay). A questionnaire survey was used to evaluate subjective sexual dysfunction. Results Based on the results of the questionnaire, approximately half (48.1%) of the patients complained of sexual dysfunction. The serum prolactin levels were significantly higher in patients with sexual dysfunction than in those without. In patients treated with antipsychotic monotherapy, the serum prolactin levels were significantly lower in patients treated with APZ than with other antipsychotics. In patients receiving 2 or more antipsychotics, the serum prolactin levels were significantly lower in patients treated with APZ-containing regimens than in patients treated with APZ-free regimens. Conclusions Treatment with APZ did not influence the serum prolactin level, and adjunctive treatment with APZ may ameliorate the hyperprolactinemia that occurs during monotherapy with other antipsychotics

    A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines

    No full text
    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions
    corecore