19 research outputs found

    Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs

    Get PDF
    AbstractAvian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance

    Comparative Validation of Light Environment Simulation with Actual Measurements

    No full text
    The quality of indoor lighting significantly influences human well-being, emphasizing the need to integrate lighting planning into the architectural design process. To optimize indoor lighting conditions, light environment simulations are commonly employed. While much of the relevant literature clearly shows that simulations are widely used to predict lighting environments, there is limited active research validating these simulations. Therefore, this study aimed to assess the alignment between actual measurements and simulations, specifically focusing on daylight-induced glare. To achieve this, a comparative analysis and verification of glare levels between simulations and actual measurements were conducted that accounted for glare location and direction. Disparities between the simulated and measured glare levels were revealed contingent on the glare location and direction. These variations primarily arose from the simulation’s utilization of a fisheye field of view (FOV) for glare measurement. To improve the accuracy of glare analysis in simulations, it is advisable to follow the standards related to the human perception of glare, such as the human field of view (FOV), instead of solely depending on a fisheye FOV. The study’s limitations include challenges in environmental replication, minor measurement errors, and tree branch shading interference. Despite the potential for simulations to not replicate temporary glare effects, consistent differences with actual measurements indicate that the fisheye FOV was a key contributing factor

    Effects of Hydrogen-rich Water on Cariogenic Bacteria

    No full text
    Context: Some kinds of electrolysed water have been reported to exhibit antioxidant and bactericidal activity. However, studies on the effect of electrolysed hydrogen-rich water (EHW) with a neutral pH on cariogenic bacteria are limited. Aim: This study aimed to evaluate the feasibility of using EHW as a mouthwash by examining its various effects on cariogenic bacteria. Materials and Methods: To test the bactericidal and anti-biofilm formation effects of EHW on Streptococcus mutans and Streptococcus sobrinus, bacterial growth curves, colony-forming unit (CFU) counts, and crystal violet staining of biofilms were examined after exposing the bacterial pellets to EHW or tap water as a control for one minute. In addition, the expressions of glucosyltransferase and glucan-binding proteins encoding genes were examined using real-time PCR. Results: Bacterial growth and biofilm formation were inhibited, and the number of CFUs was significantly reduced in the EHW group compared to the control group. The expression of genes encoding glucosyltransferases (gtfB, gtfC, and gtfI) and glucan-binding proteins (gbpC and dblB) were also decreased in the EHW group compared to the control. Conclusions: Exposing cariogenic bacteria to EHW at neutral pH for one minute can effectively inhibit bacterial growth and biofilm formation in vitro, suggesting that EHW is a promising mouthwash

    Defective Uteroplacental Vascular Remodeling in Preeclampsia: Key Molecular Factors Leading to Long Term Cardiovascular Disease

    No full text
    Preeclampsia is a complex hypertensive disorder in pregnancy which can be lethal and is responsible for more than 70,000 maternal deaths worldwide every year. Besides the higher risk of unfavorable obstetric outcomes in women with preeclampsia, another crucial aspect that needs to be considered is the association between preeclampsia and the postpartum cardiovascular health of the mother. Currently, preeclampsia is classified as one of the major risk factors of cardiovascular disease (CVD) in women, which doubles the risk of venous thromboembolic events, stroke, and ischemic heart disease. In order to comprehend the pathophysiology behind the linkage between preeclampsia and the development of postpartum CVD, a thorough understanding of the abnormal uteroplacental vascular remodeling in preeclampsia is essential. Therefore, this review aims to summarize the current knowledge of the defective process of spiral artery remodeling in preeclampsia and how the resulting placental damage leads to excessive angiogenic imbalance and systemic inflammation in long term CVD. Key molecular factors in the pathway—including novel findings of microRNAs—will be discussed with suggestions of future management strategies of preventing CVD in women with a history of preeclampsia

    Glycosylation generates an efficacious and immunogenic vaccine against H7N9 influenza virus.

    No full text
    Zoonotic avian influenza viruses pose severe health threats to humans. Of several viral subtypes reported, the low pathogenic avian influenza H7N9 virus has since February 2013 caused more than 1,500 cases of human infection with an almost 40% case-fatality rate. Vaccination of poultry appears to reduce human infections. However, the emergence of highly pathogenic strains has increased concerns about H7N9 pandemics. To develop an efficacious H7N9 human vaccine, we designed vaccine viruses by changing the patterns of N-linked glycosylation (NLG) on the viral hemagglutinin (HA) protein based on evolutionary patterns of H7 HA NLG changes. Notably, a virus in which 2 NLG modifications were added to HA showed higher growth rates in cell culture and elicited more cross-reactive antibodies than did other vaccine viruses with no change in the viral antigenicity. Developed into an inactivated vaccine formulation, the vaccine virus with 2 HA NLG additions exhibited much better protective efficacy against lethal viral challenge in mice than did a vaccine candidate with wild-type (WT) HA by reducing viral replication in the lungs. In a ferret model, the 2 NLG-added vaccine viruses also induced hemagglutination-inhibiting antibodies and significantly suppressed viral replication in the upper and lower respiratory tracts compared with the WT HA vaccines. In a mode of action study, the HA NLG modification appeared to increase HA protein contents incorporated into viral particles, which would be successfully translated to improve vaccine efficacy. These results suggest the strong potential of HA NLG modifications in designing avian influenza vaccines

    Combined Model-Based Prediction for Non-Invasive Prenatal Screening

    No full text
    The risk of chromosomal abnormalities in the child increases with increasing maternal age. Although non-invasive prenatal testing (NIPT) is a safe and effective prenatal screening method, the accuracy of the test results needs to be improved owing to various testing conditions. We attempted to achieve a more accurate and robust prediction of chromosomal abnormalities by combining multiple methods. Here, three different methods, namely standard Z-score, normalized chromosome value, and within-sample reference bin, were used for 1698 reference and 109 test samples of whole-genome sequencing. The logistic regression model combining the three methods achieved a higher accuracy than any single method. In conclusion, the proposed method offers a promising approach for increasing the reliability of NIPT

    Neuromyelitis optica (NMO)‐IgG‐driven organelle reorganization in human iPSC‐derived astrocytes

    No full text
    Neuromyelitis optica (NMO) is an autoimmune disease that primarily targets astrocytes. Autoantibodies (NMO-IgG) against the water channel protein, aquaporin 4 (AQP4), are a serologic marker in NMO patients, and they are known to be responsible for the pathophysiology of the disease. In the brain, AQP4 is mainly expressed in astrocytes, especially at the end-feet, where they form the blood-brain barrier. Following the interaction between NMO-IgG and AQP4 in astrocytes, rapid AQP4 endocytosis initiates pathogenesis. However, the cellular and molecular mechanisms of astrocyte destruction by autoantibodies remain largely elusive. We established an in vitro human astrocyte model system using induced pluripotent stem cells (iPSCs) technology in combination with NMO patient-derived serum and IgG to elucidate the cellular and functional changes caused by NMO-IgG. Herein, we observed that NMO-IgG induces structural alterations in mitochondria and their association with the endoplasmic reticulum (ER) and lysosomes at the ultrastructural level, which potentially leads to impaired mitochondrial functions and dynamics. Indeed, human astrocytes display impaired mitochondrial bioenergetics and autophagy activity in the presence of NMO-IgG. We further demonstrated NMO-IgG-driven ER membrane deformation into a multilamellar structure in human astrocytes. Together, we show that NMO-IgG rearranges cellular organelles and alter their functions and that our in vitro system using human iPSCs offers previously unavailable experimental opportunities to study the pathophysiological mechanisms of NMO in human astrocytes or conduct large-scale screening for potential therapeutic compounds targeting astrocytic abnormalities in patients with NMO. © 2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.1

    Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses

    No full text
    Abstract It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs
    corecore