7 research outputs found

    Structural Response of a Single-Stage Centrifugal Compressor to Fluid-Induced Excitations at Low-Flow Operating Condition: Experimental and Numerical Study

    No full text
    The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue

    Use of pressure spectral maps for analysis of influence of the plenum volume on the surge in centrifugal blower

    Get PDF
    The influence of plenum volume on surge phenomenon in a centrifugal blower was studied by means of quasidynamic analysis. In this procedure, signals were gathered at 5 pressure tappings at 146 different positions of the throttling valve controlling the mass flow rate. Frequency spectra obtained by means of Fourier analysis are combined together in the form of colour maps with frequency as the abscissa and valve position as the ordinate. Such a map provides high-resolution information about spectral structures of pressure signals attained at different mass flow rates. Analysis was conducted at two system configurations characterized by different volumes between the blower and the valve i.e. plenum volume. Research confirmed that in both cases the first disturbances appear in the vicinity of the impeller leading edge in the same position of a throttling valve before the surge. Arising flow structure is characterized by strong and random pressure jumps and does not have any dominating frequency. At further valve closure pressure disturbances propagate towards the volute and at deep surge the strongest peaks are observed at the outlet. The moment of deep surge onset is also independent of the plenum volume, however, a difference is observed in the frequency and amplitude of the main modes. With the higher outlet volume the observed oscillations fit well to the frequency of a Helmholtz resonator while, in the case of the smaller volume, the frequency is higher than the frequency of a corresponding Helmholtz resonator

    Development of mathematical model of Universal modeling method for centrifugal compressors calculation

    No full text
    The heart of the Universal modeling engineering method is the physical model that is based on flow visualization and measurements inside rotating impellers. The experience of its application allowed finding ways of mathematical model development. The loss of a head is a function of flow gradients along a surface and along a normal to it. Necessary calculations were 1-D in the previous models. Quasi-three-dimensional approach is applied in the new model. A new loading factor model was applied. It determines characteristics by the angle of inclination and the value of the loading factor at zero flow rate. This made it possible to abandon the choice of empirical coefficients. A new loss of head model in a vaneless diffuser based on the results of CFD calculations generalization is used. The new model allowed abandoning a number of empirical coefficients of the mathematical models. Identification of the new mathematical model by the characteristics of model tests of centrifugal compressor stages was made. The efficiency calculation accuracy was sufficient for the engineering method

    Simulation of gas-dynamic characteristics of a centrifugal compressor vane diffuser using neural networks

    No full text
    The paper presents the results of mathematical simulation of the characteristics of a vane diffuser of a centrifugal compressor intermediate stage, such as the loss coefficient and the deviation angle versus the outlet vane angle of the diffuser. The simulation of these characteristics was made on the basis of processing the results of studies performed by the Research Laboratory “Gas Dynamics of Turbomachines” of Peter the Great St.Petersburg Polytechnic University at the model characteristics of vane diffusers. Given the almost complete absence of recommendations in the literature, the paper describes the technology for constructing neural network models, which includes preparing a sample of input data and determining the optimal structure of the neural network. Based on the obtained mathematical models, a computational experiment was carried out in order to determine the influence of the main geometric and gas-dynamic parameters on the efficiency of vane diffusers. The results of the computational experiment on neural models of the efficiency of a vane diffuser are analyzed according to the existing ideas about the physics of the processes of energy conversion in a vane diffuser

    Issues of gas dynamic characteristics modeling: a study on a centrifugal compressor model stage

    No full text
    The paper presents the results of CFD-calculations of a centrifugal compressor stage with a high-pressure 3D impeller and a vaneless diffuser. The stage was designed by Prof. A. M. Simonov in the Problem Laboratory of Compressor LPI according to the following design parameters: flow rate coefficient 0.080, loading factor 0.74, and the relative Mach number 0.78. Two design grids were used: 2.4 and 4.4 million cells for the sector with one blade. The entire stage was calculated with a sparser grid. Special “Stage” interface conditions are used to interface the gas-dynamic parameters at the boundary regions. The SST turbulence model was used in the calculations. The results of efficiency characteristics and work coefficient comparison showed the following: in design flow rate all three variants of the calculation overstate the loading factor by 14.3%; the calculated characteristics of polytrophic work coefficient in the staging of 360 degrees are closest to the experimental characteristics, but the absolute value is greater than 12% at a flow rate coefficient of 0.085; the maximum calculated efficiency of a stage (the circle of 360 degrees) is almost equal to the measured maximum efficiency

    Unstable Flow Structures Present at Different Rotational Velocities of the Centrifugal Compressor

    No full text
    Unstable flow structures cause inevitable energy losses in all power energy systems, including turbomachines. In this study, a set of analyses was conducted with the use of spectral maps on the pressure signals obtained from an industrial centrifugal compressor. The spectral maps provide one a detailed visualization of the flow conditions present in the machine along the performance curve and to distinguish the flow phenomena present prior to the surge. The method accuracy is especially useful in detecting the inlet recirculation. The study was conducted at four impeller rotational speeds with varying loads imposed by a valve at the outlet. At each speed, the machine experienced different stages of unstable flow conditions prior to the surge. Five main frequency peaks that appeared in all cases were identified and discussed. The surge was observed at all impeller speeds. At lower ones, however, it appeared at higher valve closures. At higher speeds, the surge was much more intense. The study has also shown that the inlet recirculation appears also for the closed-type industrial impeller. The phenomenon was present in all conditions. The higher impeller speed, the faster onset of the inlet recirculation was. This structure has a strong potential for an early instability warning because it appears in various types of impellers, has a very particular spectral structure and its positioning is very predictable. This study gives another example of the inlet recirculation universality and potential for efficient anti-surge protection
    corecore