3 research outputs found

    Hoveyda–Grubbs catalysts with an N→Ru coordinate bond in a six-membered ring. Synthesis of stable, industrially scalable, highly efficient ruthenium metathesis catalysts and 2-vinylbenzylamine ligands as their precursors

    No full text
    A novel and efficient approach to the synthesis of 2-vinylbenzylamines is reported. This involves obtaining 2-vinylbenzylamine ligands from tetrahydroisoquinoline by alkylation and reduction followed by the Hofmann cleavage. The resultant 2-vinylbenzylamines allowed us to obtain new Hoveyda–Grubbs catalysts, which were thoroughly characterised by NMR, ESIMS, and X-ray crystallography. The utility of this chemistry is further demonstrated by the tests of the novel catalysts (up to 10−2 mol %) in different metathesis reactions such as cross metathesis (CM), ring-closing metathesis (RCM) and ring-opening cross metathesis (ROCM)

    Influence of Substituents in a Six-Membered Chelate Ring of HG-Type Complexes Containing an N→Ru Bond on Their Stability and Catalytic Activity

    No full text
    An efficient approach to the synthesis of olefin metathesis HG-type catalysts containing an N→Ru bond in a six-membered chelate ring was proposed. For the most part, these ruthenium chelates can be prepared easily and in high yields based on the interaction between 2-vinylbenzylamines and Ind II (the common precursor for Ru-complex synthesis). It was demonstrated that the increase of the steric volume of substituents attached to the nitrogen atom and in the α-position of the benzylidene fragment leads to a dramatic decrease in the stability of the target ruthenium complexes. The bulkiest iPr substituent bonded to the nitrogen atom or to the α-position does not allow the closing of the chelate cycle. N,N-Diethyl-1-(2-vinylphenyl)propan-1-amine is a limiting case; its interaction with Ind II makes it possible to isolate the corresponding ruthenium chelate in a low yield (5%). Catalytic activity of the synthesized complexes was tested in RCM reactions and compared with α-unsubstituted catalysts obtained previously. The structural peculiarities of the final ruthenium complexes were thoroughly investigated using XRD and NMR analysis, which allowed making a reliable correlation between the structure of the complexes and their catalytic properties

    Application of New Efficient Hoveyda–Grubbs Catalysts Comprising an N→Ru Coordinate Bond in a Six-Membered Ring for the Synthesis of Natural Product-Like Cyclopenta[b]furo[2,3-c]pyrroles

    No full text
    The ring rearrangement metathesis (RRM) of a trans-cis diastereomer mixture of methyl 3-allyl-3a,6-epoxyisoindole-7-carboxylates derived from cheap, accessible and renewable furan-based precursors in the presence of a new class of Hoveyda–Grubbs-type catalysts, comprising an N→Ru coordinate bond in a six-membered ring, results in the difficult-to-obtain natural product-like cyclopenta[b]furo[2,3-c]pyrroles. In this process, only one diastereomer with a trans-arrangement of the 3-allyl fragment relative to the 3a,6-epoxy bridge enters into the rearrangement, while the cis-isomers polymerize almost completely under the same conditions. The tested catalysts are active in the temperature range from 60 to 120 °C at a concentration of 0.5 mol % and provide better yields of the target tricycles compared to the most popular commercially available second-generation Hoveyda–Grubbs catalyst. The diastereoselectivity of the intramolecular Diels–Alder reaction furan (IMDAF) reaction between starting 1-(furan-2-yl)but-3-en-1-amines and maleic anhydride, leading to 3a,6-epoxyisoindole-7-carboxylates, was studied as well
    corecore