7 research outputs found

    ESSENTIAL OIL COMPOSITION OF ARTEMISIA VULGARIS GROWN IN EGYPT

    Get PDF
    Objective: The objective of this research was to evaluate the significance of the plant's origin and to assess the essential oil composition of Artemisia vulgaris grown in Egypt simultaneously evaluating the effect of environmental conditions on essential oil composition.Methods: Seeds were planted and the essential oils extracted, using hydrodistillation, from the plants that grew. The resulting essential oils were examined, using gas chromatography linked to mass spectrometry (GC-MS). Thus also evaluating the essential oil chemotype fingerprint†in A. vulgarisResults:  The study identified: the most abundant compounds being camphor, 3, 5-dimethylcyclohexane, germacrene D, cubebene, yomogi alcohol, artemisia alcohol, caryophyllene, while is lower concentrations thujopsene, muurolene, borneol, terpinen-4-ol, valencene, elemene and humulene. Despite the origins of the seeds, the chemical profile was very similar to those of plants grown in Egypt, thus suggesting essential oil composition was significantly influenced by the environmental conditions.Conclusion: Based on the present study, It is suggested that seed origin may play a less significant part if the seed is planted in an environment different to that of its origin, this study proved that and favors the plant-environment interaction to influence the secondary metabolite composition. This supports that plant metabolite profiles are greatly affected by the environment they are grown in.Â

    Inhibitors of chloride corrosion of reinforcement steel in concrete based on derivatives of salts of carboxylic acids and dimethylaminopropylamine

    Get PDF
    In our study, we synthesised derivatives of salts of carboxylic acids and dimethylaminopropylamine: 3-(dimethylamino)propyl-1-ammonium acetate, 3-(dimethylamino)propyl-1-ammonium hexanoate, 3-(dimethylamino)propyl-1-ammonium octanoate, and 3-(dimethylamino)propyl-1-ammonium terephthalate. The structures of the molecules of the obtained substances were confirmed using physical methods: Fourier-transform infrared spectroscopy, NMR spectroscopy, and HPLC. Electrochemical methods (voltammetry and electrochemical impedance spectroscopy) and quantum chemical modeling were used to assess the inhibitory effect of the synthesised substances with regard to 35GS reinforcement steel. Experiments were conducted in a water extract from a mortar simulating concrete pore solution in the presence of chlorides inducing pitting corrosion. 3-(dimethylamino)propyl-1-ammonium terephthalate is expected to have the highest degree of protection (up to 71%) at a concentration of 2.0 g·dm–3. The highest degree of protection for the derivatives with alkyl radicals is 41–46% in a range of concentrations from 0.5 to 2.0 g·dm-3. The results of potentiodynamic measurements and quantum chemical modeling were close. Average level of degree of protection can be explained by a high concentration of chlorides in the model solution (1.00 mol·dm–3). The effectiveness of the obtained substances is to be further studied using fine-grained concrete. This will help to assess the impact of the additives on the capillary pore structure (permeability) of concrete and the concentration of chloride

    Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles

    No full text
    The temperature and hydrogen isotope composition of the fumarolic gases have been studied at Kudriavy volcano, Kurile Islands, which is unique for investigating the processes of magma degassing because of the occurrence of numerous easily accessible fumaroles with a temperature range of 100–940°C. There are several local fumarolic fields with a total surface area of about 2600 m2 within the flattened crater of 200×600 m. Each fumarolic field is characterized by the occurrence of high- and low-temperature fumaroles with high gas discharges and steaming areas with lower temperatures. We have studied the thermal budget of the Kudriavy fumarolic system on the basis of the quantitative dependences of the hydrogen isotope ratio (D/H) and tritium concentration on the temperature of fumarolic gases and compared them with the calculated heat balance of mixing between hot magmatic gas and cold meteoric water. Hydrogen isotope composition (δD and 3H) shows a well expressed correlation with the gas temperature. Since D/H ratio and 3H are good indicators of water sources in volcanic areas, it suggests that the thermal budget of the fumarolic system is mostly controlled by the admixing of meteoric waters to magmatic gases. The convective mechanism of heat transfer in the hydrothermal system governs the maximum temperatures of local fumaroles and fumarolic fields. Low-temperature fumaroles at Kudriavy are thermally buffered by the boiling processes of meteoric waters in the mixing zone at pressures of 3–12 bar. These values may correspond to the hydrostatic pressure of water columns about 30–120 m in height in the volcanic edifice and hence to the depth of a mixing/boiling zone. Conductive heat transfer is governed by conductive heat exchange between gases and country rocks and appears to be responsible for the temperature distribution around a local fumarolic vent. The temperature and pressure of shallow degassing magma are estimated to be 1050°C and 2–3 bar, respectively. The length of the ‘main’ fumarolic gas conduit is estimated to be about 80 m from the linear correlation between maximal temperatures of fumarolic fields and distances to the highest-temperature ‘F-940’ fumarole. This value may correspond to the depth of an apical part of the magmatic chamber. The geometry of the crater zone at the Kudriavy summit and the model of convective gas cooling suggest different hydrostatic pressures in the hydrothermal system at the base of high- and low-temperature gas conduits. The depths of gas sources for low-temperature fumaroles are evaluated to be about 200 m at the periphery of the magma chamber

    Evaluation of the inhibitory effect of some derivatives of salts of long-chain carboxylic acids in relation to pitting corrosion of reinforcing steel in concrete

    No full text
    Derivatives of salts of long chain carboxylic acids and dimethylaminopropylamine, including those similar in composition to vegetable oils were synthesized. The structure of the molecules of new substances was reliably confirmed using physical methods of IR-Fourier spectroscopy, NMR spectroscopy, and HPLC. The inhibitory effect of the synthesized substances on 35GS grade reinforcing steel was assessed using voltammetry. Experiments were carried out in an aqueous extract from a mortar, simulating the concrete pore solution, in the presence of chlorides as activators of pitting corrosion, as well as in samples of fine-grained concrete with periodic immersion in a chloride solution. It was found that 3-(dimethylamino)propyl-1-ammonium stearate did not exhibit an inhibitory effect. The introduction of salts of fatty acids of coconut and sunflower oils increased the anti-corrosion properties. The degree of protection was 40-44% in aqueous solutions and 30-32% for concrete samples. The time before the onset of corrosion in concrete samples was found to increase by 1.75 times compared to the control composition without additive

    Phytochemical Characterization and Biological Activities of Essential Oil from Satureja montana L., a Medicinal Plant Grown under the Influence of Fertilization and Planting Dates

    No full text
    The rising demand for safe plant compounds and herbal products that contribute positively to human health is in line with current market trends. Plants belonging to the Satureja genus, particularly the aromatic medicinal S. montana L. from the Lamiaceae family, are well suited to these trends as they serve as pharmaceutical raw materials. This research aimed to assess the influence of sowing date and fertilization doses, as well as their interaction, on the fresh weight, essential oil content, and composition of S. montana. Experimental cultivation involved varying nitrogen and phosphorus levels. The second cut had the highest fresh weight and oil production compared to the first cut. The highest total plant biomass was achieved with autumn sowing and fertilization at 55 kg N/ha and 37 kg P/ha, whereas Spring sowing exhibited higher essential oil production, with the maximum oil % with 74 kg P/ha and oil yield after applying 55 kg N/ha and 74 kg P/ha. The GC-MS analysis revealed that carvacrol was the predominant compound, with it being recommended to grow S. montana in Spring at doses of 55 kg N/ha and 74 kg P/ha for the superior oil yield. Additionally, S. montana essential oil demonstrated notable biological and antimicrobial activity, positioning it as a potential alternative to chemical food preservatives

    Review of Particle Physics, 2002-2003

    No full text
    This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the first time we cover searches for evidence of extra dimensions (both in the particle listings and in a new review). Another new review is on Grand Unified Theories. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov

    Review of Particle Physics, 2004-2005

    No full text
    The Review of Particle Physics and the abbreviated version, the Particle Physics Booklet, are reviews of the field of Particle Physics. This complete Review includes a compilation/evaluation of data on particle properties, called the "Particle Listings". These Listings include 1726 new measurements from 512 papers, in addition to the 20200 measurements from 5903 papers that first appeared in previous editions. The Review and the Booklet are published in even numbered years. This edition is an updating through December 2003 (and, in some areas, well into 2004)
    corecore