14 research outputs found

    High-Efficiency Ge-on-Si SPADs for Short-Wave Infrared

    Get PDF
    High efficiency, Ge-on-Si single-photon avalanche diode (SPAD) detectors operating in the short-wave infrared region (1310 nm - 1550 nm) at near room temperature have the potential to be used for numerous emerging applications, including quantum communications, quantum imaging and eye-safe LIDAR applications. In this work, planar geometry Ge-on-Si SPAD designs demonstrate a significant decrease in the dark count rate compared to previous generations of Ge-on-Si detectors. 100 μm diameter microfabricated SPADs demonstrate record low NEPs of 2.2×10-16 WHz-1/2, and single-photon detection efficiencies of 18% for 1310 nm at 78 K. The devices demonstrate single-photon detection at temperatures up to 175 K

    High performance planar germanium-on-silicon single-photon avalanche diode detectors

    Get PDF
    Single-photon detection has emerged as a method of choice for ultra-sensitive measurements of picosecond optical transients. In the short-wave infrared, semiconductor-based single-photon detectors typically exhibit relatively poor performance compared with all-silicon devices operating at shorter wavelengths. Here we show a new generation of planar germanium-on-silicon (Ge-on-Si) single-photon avalanche diode (SPAD) detectors for short-wave infrared operation. This planar geometry has enabled a significant step-change in performance, demonstrating single-photon detection efficiency of 38% at 125 K at a wavelength of 1310 nm, and a fifty-fold improvement in noise equivalent power compared with optimised mesa geometry SPADs. In comparison with InGaAs/InP devices, Ge-on-Si SPADs exhibit considerably reduced afterpulsing effects. These results, utilising the inexpensive Ge-on-Si platform, provide a route towards large arrays of efficient, high data rate Ge-on-Si SPADs for use in eye-safe automotive LIDAR and future quantum technology applications

    3D LIDAR imaging using Ge-on-Si single–photon avalanche diode detectors

    Get PDF
    We present a scanning light detection and ranging (LIDAR) system incorporating an individual Ge-on-Si single-photon avalanche diode (SPAD) detector for depth and intensity imaging in the short-wavelength infrared region. The time-correlated single-photon counting technique was used to determine the return photon time-of-flight for target depth information. In laboratory demonstrations, depth and intensity reconstructions were made of targets at short range, using advanced image processing algorithms tailored for the analysis of single–photon time-of-flight data. These laboratory measurements were used to predict the performance of the single-photon LIDAR system at longer ranges, providing estimations that sub-milliwatt average power levels would be required for kilometer range depth measurements

    Afterpulsing in Ge-on-Si single-photon avalanche diodes

    Get PDF
    In this letter, we investigate afterpulsing in 26 and 100 μm diameter planar geometry Ge-on-Si single-photon avalanche diode (SPAD) detectors, by use of the double detector gating method with a gate width of 50 ns. Ge-on-Si SPADs were found to exhibit a 1% afterpulsing probability at a delay time of 200 μs and temperature of 78 K, and 130 μs at a temperature of 150 K. These delay times were measured with an excess bias of 3.5% applied, which corresponded to a single-photon detection efficiency of 15% at 1.31 μm . We demonstrate that reducing the detector diameter can also be an effective way to restrict afterpulsing in this material system

    Ge-on-Si high efficiency SPADs at 1310 nm

    No full text
    Ge on Si SPAD devices hold promise for cost effective use in vehicular LIDAR [1], quantum optics, quantum communications, and other applications. Previous Ge on SI SPAD devices using mesa structures have shown high dark count rate (DCR) and low single photon detection efficiency (SPDE) [2]. The novel planar device design demonstrated here shows low DCR and high SPDE at short-wave infrared wavelengths. The novel design allows better performance by confining the high field regions using an implanted charge sheet and small top contact region. This design removes the interaction between etched sidewalls and high electric fields seen in mesa devices. We have fabricated devices with a 100 μm diameter charge sheet and a 90 μ m diameter top contact. TCSPC measurements were taken at 78 K, 100 K, 125 K, using 1310 nm light with <; <; 1 photon per pulse on average and 50 ns gate times (Fig. 1). A record high SPDE of 38% for Ge-on-Si SPADs was measured for a device temperature of 125 K with an excess bias of 5.5 %, and a record low NEP of 2× 10 -16 WHz -1/2 was demonstrated at 78 K

    Germanium on Silicon Single Photon Avalanche Detectors Using Silicon-on-Insulator Substrates

    No full text
    Single photon avalanche detectors (SPADs) operating in gated-Geiger mode at near infrared wavelengths have applications in quantum key distribution (QKD), eye-safe light detection and ranging (LIDAR), 3D image sensing, quantum enhanced imaging and photonic based quantum information processing. Whilst InGaAs SPADs are commercially available, the high cost and lack of integrated SPADs limit the applications. We have previously demonstrated vertical Geiger mode Ge on Si SPADs at 1310 and 1550 nm operating at 100 K where the Ge is used as an absorber and the lower noise Si is used as the avalanche gain region. At 100 K and 1310 nm a single photon detection efficiency of 4% was demonstrated with a dark count rate (DCR) of 5 MHz

    Ge-on-Si single-photon avalanche diode detectors for short-wave infrared wavelengths

    Get PDF
    Germanium-on-silicon (Ge-on-Si) based single-photon avalanche diodes (SPADs) have recently emerged as a promising detector candidate for ultra-sensitive and picosecond resolution timing measurement of short-wave infrared (SWIR) photons. Many applications benefit from operating in the SWIR spectral range, such as long distance light detection and ranging, however, there are few single-photon detectors exhibiting the high-performance levels obtained by all-silicon SPADs commonly used for single-photon detection at wavelengths <1 µm. This paper first details the advantages of operating at SWIR wavelengths, the current technologies, and associated issues, and describes the potential of Ge-on-Si SPADs as a single-photon detector technology for this wavelength region. The working principles, fabrication and characterisation processes of such devices are subsequently detailed. We review the research in these single-photon detectors and detail the state-of-the-art performance. Finally, the challenges and future opportunities offered by Ge-on-Si SPAD detectors are discussed

    High sensitivity Ge-on-Si single-photon avalanche diode detectors

    Get PDF
    The performance of planar geometry Ge-on-Si single-photon avalanche diode detectors of 26µm diameter is presented. Record low dark count rates are observed, remaining less than 100 K counts per second at 6.6% excess bias and 125 K. Single-photon detection efficiencies are found to be up to 29.4%, and are shown to be temperature insensitive. These performance characteristics lead to a significantly reduced noise equivalent power (NEP) of 7.7×10−17WHz−12 compared to prior planar devices, and represent a two orders of magnitude reduction in NEP compared to previous Ge-on-Si mesa devices of a comparable diameter. Low jitter values of 134±10ps are demonstrated

    Decoupling the dark count rate contributions in Ge-on-Si single photon avalanche diodes

    No full text
    Single Photon Avalanche Diodes (SPADs) are semiconductor devices capable of accurately timing the arrival of single photons of light. Previously, we have demonstrated a pseudo-planar Ge-on-Si SPAD that operates in the short-wave infrared, which can be compatible with Si foundry processing. Here, we investigate the pseudo-planar design with simulation and experiment to establish the spatial contributions to the dark-count rate, which will ultimately facilitate optimisation towards operation at temperatures compatible with Peltier cooler technologies
    corecore