93 research outputs found
Prognostic impact of meningeal dissemination in primary CNS lymphoma (PCNSL): experience from the G-PCNSL-SG1 trial
Background We evaluated the frequency and prognostic impact of meningeal dissemination (MD) in immunocompetent adult patients with primary central nervous system lymphoma treated in a randomized phase III trial. Patients and methods MD was evaluated at study entry and defined by lymphoma proof in the meningeal compartment detected by at least one of the following methods: cerebrospinal fluid (CSF) cytomorphology, detection of clonal B cells by IgH PCR in CSF or contrast enhancement of the leptomeninges on magnetic resonance imaging (MRI). Results Data on MD were available in 415 patients, of those, MD was detected in 65 (15.7%): in 44/361 (12.2%) by CSF cytomorphology, in 16/152 (10.5%) by PCR and in 17/415 (4.1%) by MRI. Major patients' characteristics and therapy did not significantly differ between patients with MD (MD+) versus those without MD (MD−). There was a significant correlation of MD with CSF pleocytosis (>5/μl; P45 mg/dl). Median progression-free survival was 6.7 months [95% confidence interval (CI) 0-14.5] in MD+ and 8.3 months (5.7-10.8) in MD− patients (P=0.95); median overall survival was 21.5 months (95% CI 16.8-26.1) and 24.9 months (17.5-32.3), respectively (P=0.98). Conclusion MD was detected infrequently and had no impact on outcome in this tria
2022 Review of Data-Driven Plasma Science
Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required
Business analytics in industry 4.0: a systematic review
Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We
would like to thank to the three anonymous reviewers for their helpful suggestions
Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A
Finding their voice: Jewish women artists in the 19th and 20th centuries.
While Jewish women artists became active in the visual arts beginning in the mid-19th century, to date they have not been addressed as a group. This project presents a theoretical and historical overview of the work of six Jewish women artists---Rebecca Solomon, Charlotte Salomon, Helen Frankenthaler, Sonia Delaunay, Louise Nevelson, and Eva Hesse---examining their art in the context of their cultural heritage, Euro-American nationalities, social environments, life experiences, and contemporary art movements. Providing both representational and nonrepresentational artists---an important factor in Jewish aesthetics---this group includes both well-recognized artists and those whose work has only recently become known. For Delaunay, Frankenthaler, Nevelson, and Hesse, this analysis provides an understanding of their artwork in light of their Jewish heritage, as opposed to the Western cultural context in which they are most often viewed.To properly examine the lives and artwork of these artists requires a multi-faceted theoretical framework. Given the history of Jewish exile, which dispersed artists among Euro-American societies, cross-cultural perspectives and analyses provide a context in which to situate their artwork. Contemporary aesthetic theories and women's art scholarship reframe the visual arts, particularly in reference to Jewish women artists. Finally, new textual methods of interpretation contribute to a broader understanding than traditional art historical practice.Since Euro-American art scholars most usually confine themselves within Western culture and aesthetics, the introduction of Jewish aesthetic history and theory provides a more appropriate structure within which to examine the work of Jewish women artists.While this sample group is small, it represents a broad historical and geographical range and examines the various ways of creating visual art within that range. This study weaves together traditional art historical models with newer theories from textual art scholarship, as well as cross-cultural and Jewish cultural studies. This use of a multi-faceted theoretical framework seeks to provide a more complete understanding of the lives and artwork of Jewish women artists, and their place within art history.Thesis (Ph.D.)--Florida Atlantic University, 2003.School code: 0119
- …