37 research outputs found

    Mental Health During COVID-19: Community-Based Arts Addressing African American Experiences

    Get PDF
    Focusing on African American experiences, this article explores the pursuit of mental health as a human right during COVID-19, and the capacity of arts-based community engagement initiatives to historicize and deepen such efforts. Given the syndemic nature of COVID-19 health inequities, this research explores the arc of VITAL Health and My Life Matters projects in their engagement with mental health injustices and freedom struggles that respond to race-based traumatic stress and intergenerational trauma in the United States. With performances and workshops reaching thousands of audience members in North Carolina and nationally, these programs have centered Black mental health, offering creative, history-engaged opportunities for intra- and interpersonal connection and reflection. Through discourse analysis and critical ethnography, we propose that cultural performance initiatives can expand public engagement with mental health resources during overlapping public health crises by gathering people to (a) honor grief and mutually envision change, (b) host dialogic connection for truth-telling and imagination, (c) communally embody supportive care and emancipatory engagement

    Mutations causing medullary cystic kidney disease type 1 (MCKD1) lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    While genetic lesions responsible for some Mendelian disorders can be rapidly discovered through massively parallel sequencing (MPS) of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple Mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing, and de novo assembly, we found that each of six MCKD1 families harbors an equivalent, but apparently independently arising, mutation in sequence dramatically underrepresented in MPS data: the insertion of a single C in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5-5 kb), GC-rich (>80%), coding VNTR in the mucin 1 gene. The results provide a cautionary tale about the challenges in identifying genes responsible for Mendelian, let alone more complex, disorders through MPS

    Assessing the Quality of Decision Support Technologies Using the International Patient Decision Aid Standards instrument (IPDASi)

    Get PDF
    Objectives To describe the development, validation and inter-rater reliability of an instrument to measure the quality of patient decision support technologies (decision aids). Design Scale development study, involving construct, item and scale development, validation and reliability testing. Setting There has been increasing use of decision support technologies – adjuncts to the discussions clinicians have with patients about difficult decisions. A global interest in developing these interventions exists among both for-profit and not-for-profit organisations. It is therefore essential to have internationally accepted standards to assess the quality of their development, process, content, potential bias and method of field testing and evaluation. Methods Scale development study, involving construct, item and scale development, validation and reliability testing. Participants Twenty-five researcher-members of the International Patient Decision Aid Standards Collaboration worked together to develop the instrument (IPDASi). In the fourth Stage (reliability study), eight raters assessed thirty randomly selected decision support technologies. Results IPDASi measures quality in 10 dimensions, using 47 items, and provides an overall quality score (scaled from 0 to 100) for each intervention. Overall IPDASi scores ranged from 33 to 82 across the decision support technologies sampled (n = 30), enabling discrimination. The inter-rater intraclass correlation for the overall quality score was 0.80. Correlations of dimension scores with the overall score were all positive (0.31 to 0.68). Cronbach's alpha values for the 8 raters ranged from 0.72 to 0.93. Cronbach's alphas based on the dimension means ranged from 0.50 to 0.81, indicating that the dimensions, although well correlated, measure different aspects of decision support technology quality. A short version (19 items) was also developed that had very similar mean scores to IPDASi and high correlation between short score and overall score 0.87 (CI 0.79 to 0.92). Conclusions This work demonstrates that IPDASi has the ability to assess the quality of decision support technologies. The existing IPDASi provides an assessment of the quality of a DST's components and will be used as a tool to provide formative advice to DSTs developers and summative assessments for those who want to compare their tools against an existing benchmark

    Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

    Get PDF
    Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854

    Patterns and rates of exonic de novo mutations in autism spectrum disorders

    Get PDF
    Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified1,2. To identify further genetic risk factors, we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n= 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant and the overall rate of mutation is only modestly higher than the expected rate. In contrast, there is significantly enriched connectivity among the proteins encoded by genes harboring de novo missense or nonsense mutations, and excess connectivity to prior ASD genes of major effect, suggesting a subset of observed events are relevant to ASD risk. The small increase in rate of de novo events, when taken together with the connections among the proteins themselves and to ASD, are consistent with an important but limited role for de novo point mutations, similar to that documented for de novo copy number variants. Genetic models incorporating these data suggest that the majority of observed de novo events are unconnected to ASD, those that do confer risk are distributed across many genes and are incompletely penetrant (i.e., not necessarily causal). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5 to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case-control study provide strong evidence in favor of CHD8 and KATNAL2 as genuine autism risk factors

    Compassion training influences heart-rate variability within severe depression

    No full text
    Background: Heart-rate variability (HRV) is a marker of parasympathetic nervous system activity, and is a robust predictor of improved mental and physical health. Current psychotherapeutic interventions are effective at reducing self-report depressive symptoms, but few have improved HRV within a sample of severe depressive symptomatology. Method: This study explores the impact of a brief Compassion Focused Therapy exercise (CFT) on HRV response. Results: Results indicate that a brief CFT exercise can successfully target depressive physiology via increasing HRV, at two distinct timepoints, pre- and post- a two-week self-directed training period, even when controlling for respiration. Specifically, we first show that CFT can significantly increase HRV. Second, we show that CFT exercise can increase a subset of participants’ HRV level above a clinical cut-off value of low resting-HRV. Third, we describe how participant engagement with the CFT audio during the two-week training was very low, with 50% of individuals not accessing the audio during this period. Finally, during the CFT practice at post-two-week training, HRV was shown to decrease across time, potentially indicating a greater participant engagement in the ‘threat’ component of the exercise. Limitations: Almost 50% of the sample did not listen to the CFT exercise during the two-week training period, a feature that has implications for self-directed delivery of experimental and treatment interventions. Conclusions: CFT can significantly improve HRV for those with severely depressed symptoms at the state-level, and future work should continue to examine CFT's effectiveness for those with depression

    Multiplex Real-Time Reverse Transcription PCR for Influenza A Virus, Influenza B Virus, and Severe Acute Respiratory Syndrome Coronavirus 2

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, and the outbreak rapidly evolved into the current coronavirus disease pandemic. SARS-CoV-2 is a respiratory virus that causes symptoms similar to those caused by influenza A and B viruses. On July 2, 2020, the US Food and Drug Administration granted emergency use authorization for in vitro diagnostic use of the Influenza SARS-CoV-2 Multiplex Assay. This assay detects influenza A virus at 102.0, influenza B virus at 102.2, and SARS-CoV-2 at 100.3 50% tissue culture or egg infectious dose, or as few as 5 RNA copies/reaction. The simultaneous detection and differentiation of these 3 major pathogens increases overall testing capacity, conserves resources, identifies co-infections, and enables efficient surveillance of influenza viruses and SARS-CoV-2
    corecore