201 research outputs found
Rabi oscillations in a quantum dot-cavity system coupled to a non-zero temperature phonon bath
We study a quantum dot strongly coupled to a single high-finesse optical
microcavity mode. We use a rotating wave approximation method, commonly used in
ion-laser interactions, tegether with the Lamb-Dicke approximation to obtain an
analytic solution of this problem. The decay of Rabi oscillations because of
the electron-phonon coupling are studied at arbitrary temperature and
analytical expressions for the collapse and revival times are presented.
Analyses without the rotating wave approximation are presented by means of
investigating the energy spectrum.Comment: 7 pages, 5 figures; Revised versio
Spin-glasses in optical cavity
Recent advances in nanofabrication and optical control have garnered
tremendous interest in multi-qubit-cavity systems. Here we analyze a spin-glass
version of such a nanostructure, solving analytically for the phase diagrams in
both the matter and radiation subsystems in the replica symmetric regime.
Interestingly, the resulting phase transitions turn out to be tunable simply by
varying the matter-radiation coupling strength
Optical signatures of quantum phase transitions in a light-matter system
Information about quantum phase transitions in conventional condensed matter
systems, must be sought by probing the matter system itself. By contrast, we
show that mixed matter-light systems offer a distinct advantage in that the
photon field carries clear signatures of the associated quantum critical
phenomena. Having derived an accurate, size-consistent Hamiltonian for the
photonic field in the well-known Dicke model, we predict striking behavior of
the optical squeezing and photon statistics near the phase transition. The
corresponding dynamics resemble those of a degenerate parametric amplifier. Our
findings boost the motivation for exploring exotic quantum phase transition
phenomena in atom-cavity, nanostructure-cavity, and
nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure
Non-resonant dot-cavity coupling and its applications in resonant quantum dot spectroscopy
We present experimental investigations on the non-resonant dot-cavity
coupling of a single quantum dot inside a micro-pillar where the dot has been
resonantly excited in the s-shell, thereby avoiding the generation of
additional charges in the QD and its surrounding. As a direct proof of the pure
single dot-cavity system, strong photon anti-bunching is consistently observed
in the autocorrelation functions of the QD and the mode emission, as well as in
the cross-correlation function between the dot and mode signals. Strong Stokes
and anti-Stokes-like emission is observed for energetic QD-mode detunings of up
to ~100 times the QD linewidth. Furthermore, we demonstrate that non-resonant
dot-cavity coupling can be utilized to directly monitor and study relevant QD
s-shell properties like fine-structure splittings, emission saturation and
power broadening, as well as photon statistics with negligible background
contributions. Our results open a new perspective on the understanding and
implementation of dot-cavity systems for single-photon sources, single and
multiple quantum dot lasers, semiconductor cavity quantum electrodynamics, and
their implementation, e.g. in quantum information technology.Comment: 17 pages, 4 figure
Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer
open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form.
In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most complexity instead of , where is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly
Properties of a single photon generated by a solid-state emitter: effects of pure dephasing
We investigate the properties of a single photon generated by a solid-state
emitter subject to strong pure dephasing. We employ a model in which all the
elements of the system, including the propagating fields, are treated quantum
mechanically. We analytically derive the density matrix of the emitted photon,
which contains full information about the photon, such as its pulse profile,
power spectrum, and purity. We visualize these analytical results using
realistic parameters and reveal the conditions for maximizing the purity of
generated photons.Comment: 25pages(one column), 10 figure
Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence
We present an all-optical implementation of quantum computation using
semiconductor quantum dots. Quantum memory is represented by the spin of an
excess electron stored in each dot. Two-qubit gates are realized by switching
on trion-trion interactions between different dots. State selectivity is
achieved via conditional laser excitation exploiting Pauli exclusion principle.
Read-out is performed via a quantum-jump technique. We analyze the effect on
our scheme's performance of the main imperfections present in real quantum
dots: exciton decay, hole mixing and phonon decoherence. We introduce an
adiabatic gate procedure that allows one to circumvent these effects, and
evaluate quantitatively its fidelity
Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence
Single dye molecules at cryogenic temperatures display many spectroscopic
phenomena known from free atoms and are thus promising candidates for
fundamental quantum optical studies. However, the existing techniques for the
detection of single molecules have either sacrificed the information on the
coherence of the excited state or have been inefficient. Here we show that
these problems can be addressed by focusing the excitation light near to the
absorption cross section of a molecule. Our detection scheme allows us to
explore resonance fluorescence over 9 orders of magnitude of excitation
intensity and to separate its coherent and incoherent parts. In the strong
excitation regime, we demonstrate the first observation of the Mollow triplet
from a single solid-state emitter. Under weak excitation we report the
detection of a single molecule with an incident power as faint as 150 attoWatt,
paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure
Polarization-Correlated Photon Pairs from a Single Quantum Dot
Polarization correlation in a linear basis, but not entanglement, is observed
between the biexciton and single-exciton photons emitted by a single InAs
quantum dot in a two-photon cascade. The results are well described
quantitatively by a probabilistic model that includes two decay paths for a
biexciton through a non-degenerate pair of one-exciton states, with the
polarization of the emitted photons depending on the decay path. The results
show that spin non-degeneracy due to quantum-dot asymmetry is a significant
obstacle to the realization of an entangled-photon generation device.Comment: 4 pages, 4 figures, revised discussio
Early and efficient detection of Mycobacterium tuberculosis in sputum by microscopic observation of broth cultures.
Early, efficient and inexpensive methods for the detection of pulmonary tuberculosis are urgently needed for effective patient management as well as to interrupt transmission. These methods to detect M. tuberculosis in a timely and affordable way are not yet widely available in resource-limited settings. In a developing-country setting, we prospectively evaluated two methods for culturing and detecting M. tuberculosis in sputum. Sputum samples were cultured in liquid assay (micro broth culture) in microplate wells and growth was detected by microscopic observation, or in Löwenstein-Jensen (LJ) solid media where growth was detected by visual inspection for colonies. Sputum samples were collected from 321 tuberculosis (TB) suspects attending Bugando Medical Centre, in Mwanza, Tanzania, and were cultured in parallel. Pulmonary tuberculosis cases were diagnosed using the American Thoracic Society diagnostic standards. There were a total of 200 (62.3%) pulmonary tuberculosis cases. Liquid assay with microscopic detection detected a significantly higher proportion of cases than LJ solid culture: 89.0% (95% confidence interval [CI], 84.7% to 93.3%) versus 77.0% (95% CI, 71.2% to 82.8%) (p = 0.0007). The median turn around time to diagnose tuberculosis was significantly shorter for micro broth culture than for the LJ solid culture, 9 days (interquartile range [IQR] 7-13), versus 21 days (IQR 14-28) (p<0.0001). The cost for micro broth culture (labor inclusive) in our study was US 11.35 per sample for the LJ solid culture. The liquid assay (micro broth culture) is an early, feasible, and inexpensive method for detection of pulmonary tuberculosis in resource limited settings
- …