10 research outputs found

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    The evaluation of winter wheat adaptation to climate change in the central non-black region of russia: Study of the gene pool resistance of wheat from the n.i. vavilov institute of plant industry (vir) world collection to abiotic stress factors

    Full text link
    The paper presents the results of a 50-year research of the genepool of the winter wheat from the world’s largest wheat collection of N.I. Vavilov Institute of Plant Industry (VIR) to investigate its resistance to the abiotic stress factors of the Moscow region and see how closely it matches the attributes of a wheat ideotype as postulated by N.I. Vavilov in 1935. The critical years in studying the wheat’s winter resistance were 10 years out of 50: excessive water saturation during the year 2013; soil drought in 1988; and atmospheric drought in 1972 and 2010. During the investigation, the following gene pool features were analyzed: frost characterized by the cultivar Sojuz 50 (Russia), rapid temperature change, thawing, ice, and rotting resistance characterized by the cultivars Zarya 2 (Russia), Sv 75268, (Sweden), Caristerm and Tukan (Germany), PP 114-74 and Liwilla (Poland), Maris Ploughman and Granta (Great Britain), Titan (USA), Zdar (Czech), and Zenta (Switzerland); regeneration capacity in spring after poor wintering expressed by the cultivars Pamyati Fedina (Russia), TAW 3668.71 (Germany) and Rmo (Poland); resistance to excessive soil and air saturation exhibited by the cultivars Moskovskaya 39 (Russia), Tukan, Compal, Obelisk, Orestis, and Bussard (Germany); solid standing culm that is resistant to lodging characterized by the cultivars Tukan, Kronjuwel, Compal (Germany), Zenta (Switzerland), Moskovskaya 56 (Russia), and Hvede Sarah (Denmark); resistance to enzyme-mycotic depletion of seeds characterized by the cultivars Tukan, Compal, Obelisk, Orestis, Bussard (Germany), Sv 75268, Helge, VG 73394, Salut, Sv 75355 (Sweden), Zenta (Switzerland), Moskovskaya 39, and Ferrugineum 737.76 (Russia); and resistance to soil and atmospheric drought demonstrated by the cultivars Liessau, Heine Stamm, Severin, Neuzucht 14/4, Haynes, Rus 991, Halle 1020 (Germany), Gama (Poland), Sv 71536 (Sweden), and Moskovskaya 39 (Russia). Moreover, the cultivar Mironovskaya 808 (Ukraine) showed resistance to almost all abiotic stress factors studied. The performed study contributes towards the provision of potential sources of resistance to abiotic stress factors prevalent in the Moscow region that can be incorporated in advanced breeding programs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Evaluation of Wheat Resistance to Snow Mold Caused by Microdochium nivale (Fr) Samuels and I.C. Hallett under Abiotic Stress Influence in the Central Non-Black Earth Region of Russia

    Full text link
    Microdochium nivale is one of the most harmful fungal diseases, causing colossal yield losses and deteriorating grain quality. Wheat genotypes from the world collection of the N.I. Vavilov Institute (VIR) were evaluated for fifty years to investigate their resistance to biotic stress factors (M. nivale). Between 350 to 1085 of winter wheat genotypes were investigated annually. Ten out of fifty years were identified as rot epiphytotics (1978, 1986, 1989, 1990, 1993, 1998, 2001, 2003, 2005 and 2021). The wheat collection was investigated by following the VIR methodological requirements and CMEA unified classification of Triticum aestivum L. The field investigations were carried out in the early spring during fixed-route observations and data collection was included on the spread and development degree of the disease, followed by microbiological and microscopic pathogen identifications. The observations revealed that the primary reason for pink snow mold to infect the wheat crops was abiotic stress factors, such as thawed soil covered in snow that increased the soil temperature by 1.0–4.6◦ C above normal. Under these conditions, the plants kept growing, quickly exhausting their carbohydrate and protein resources, thus weakening their immune systems, which made them an easy target for different infections, mainly cryophilic fungi, predominantly Microdochium nivale in the Moscow region. In some years, the joint effect of abiotic and biotic stresses caused crop failure, warranting the replanting of the spring wheat. The investigated wheat genotypes exhibited variable resistance to pink snow mold. The genotypes Mironovskaya 808 (k-43920) from Ukraine;l Nemchinovskaya 846 (k-56861), from Russia; Novobanatka (k-51761) from Yugoslavia; Liwilla (k-57580) from Poland; Zdar (UH 7050) from the Czech Republic; Maris Plowman (k-57944) from the United Kingdom; Pokal (k-56827) from Austria; Hvede Sarah (k-56289) from Denmark; Moldova 83 (k-59750) from Romania; Compal (k-57585) from Germany; Linna (k-45889) from Finland and Kehra (k-34228) from Estonia determined the sources, stability and tolerance to be used in advanced breeding programs. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Measurement of the t \bart production cross section in the dilepton channel in pp collisions at \sqrts = 8 TeV

    Full text link

    Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at \sqrts = 8 TeV

    Full text link

    Measurement of jet multiplicity distributions in \mathrm t\overline\mathrm t production in pp collisions at \sqrts = 7\,\text TeV

    Full text link

    Search for the associated production of the Higgs boson with a top-quark pair

    Full text link

    Search for new physics in events with same-sign dileptons and jets in pp collisions at \sqrts = 8 TeV

    Full text link
    corecore