198 research outputs found

    CRISPR-Cas: an adaptive immunity system in prokaryotes

    Get PDF
    Most of the archaea and numerous bacteria possess an elaborate system of adaptive immunity to mobile genetic elements known as the CRISPR (clustered regularly interspaced short palindromic repeats)-associated system (CRISPR-Cas), which consists of arrays of short repeats interspersed with unique DNA spacers and adjacent operons encompassing CRISPR-associated (cas) genes with predicted and, in some cases, experimentally validated nuclease, helicase, and polymerase activities. The system functions by integrating fragments of alien DNA between the repeats and employing their transcripts to degrade the DNA of the respective invading elements via an RNA interference-like mechanism. The CRISPR-Cas system is a case of apparent Lamarckian inheritance

    Archaeal Ubiquitin-Like Proteins: Functional Versatility and Putative Ancestral Involvement in tRNA Modification Revealed by Comparative Genomic Analysis

    Get PDF
    The recent discovery of protein modification by SAMPs, ubiquitin-like (Ubl) proteins from the archaeon Haloferax volcanii, prompted a comprehensive comparative-genomic analysis of archaeal Ubl protein genes and the genes for enzymes thought to be functionally associated with Ubl proteins. This analysis showed that most archaea encode members of two major groups of Ubl proteins with the β-grasp fold, the ThiS and MoaD families, and indicated that the ThiS family genes are rarely linked to genes for thiamine or Mo/W cofactor metabolism enzymes but instead are most often associated with genes for enzymes of tRNA modification. Therefore it is hypothesized that the ancestral function of the archaeal Ubl proteins is sulfur insertion into modified nucleotides in tRNAs, an activity analogous to that of the URM1 protein in eukaryotes. Together with additional, previously described genomic associations, these findings indicate that systems for protein quality control operating at different levels, including tRNA modification that controls translation fidelity, protein ubiquitination that regulates protein degradation, and, possibly, mRNA degradation by the exosome, are functionally and evolutionarily linked

    Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea

    Get PDF
    Several recent discoveries reveal unexpected versatility of the bacterial and archaeal cytoskeleton systems that are involved in cell division and other processes based on membrane remodeling. Here we apply methods for distant protein sequence similarity detection, phylogenetic approaches, and genome context analysis to described two previously unnoticed families of the FtsZ-tubulin superfamily. One of these families is limited in its spread to Proteobacteria whereas the other is represented in diverse bacteria and archaea, and might be the key component of a novel, multicomponent membrane remodeling system that also includes a Von Willebrand A domain-containing protein, a distinct GTPase and membrane transport proteins of the OmpA family

    The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotes, the CMG (CDC45, MCM, GINS) complex containing the replicative helicase MCM is a key player in DNA replication. Archaeal homologs of the eukaryotic MCM and GINS proteins have been identified but until recently no homolog of the CDC45 protein was known. Two recent developments, namely the discovery of archaeal GINS-associated nuclease (GAN) that belongs to the RecJ family of the DHH hydrolase superfamily and the demonstration of homology between the DHH domains of CDC45 and RecJ, show that at least some Archaea possess a full complement of homologs of the CMG complex subunits. Here we present the results of in-depth phylogenomic analysis of RecJ homologs in archaea.</p> <p>Results</p> <p>We confirm and extend the recent hypothesis that CDC45 is the eukaryotic ortholog of the bacterial and archaeal RecJ family nucleases. At least one RecJ homolog was identified in all sequenced archaeal genomes, with the single exception of <it>Caldivirga maquilingensis</it>. These proteins include previously unnoticed remote RecJ homologs with inactivated DHH domain in <it>Thermoproteales</it>. Combined with phylogenetic tree reconstruction of diverse eukaryotic, archaeal and bacterial DHH subfamilies, this analysis yields a complex scenario of RecJ family evolution in Archaea which includes independent inactivation of the nuclease domain in Crenarchaeota and Halobacteria, and loss of this domain in Methanococcales.</p> <p>Conclusions</p> <p>The archaeal complex of a CDC45/RecJ homolog, MCM and GINS is homologous and most likely functionally analogous to the eukaryotic CMG complex, and appears to be a key component of the DNA replication machinery in all Archaea. It is inferred that the last common archaeo-eukaryotic ancestor encoded a CMG complex that contained an active nuclease of the RecJ family. The inactivated RecJ homologs in several archaeal lineages most likely are dedicated structural components of replication complexes.</p> <p>Reviewers</p> <p>This article was reviewed by Prof. Patrick Forterre, Dr. Stephen John Aves (nominated by Dr. Purificacion Lopez-Garcia) and Prof. Martijn Huynen.</p> <p>For the full reviews, see the Reviewers' Comments section.</p

    Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota"

    Get PDF
    Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea

    Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified.</p> <p>Results</p> <p>We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity.</p> <p>Conclusion</p> <p>The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of comprehensive identification of these systems particularly challenging. However, these same properties can be exploited to develop context-based computational approaches which, combined with exhaustive analysis of subtle sequence similarities were employed in this work to substantially expand the current collection of TAS by predicting both previously unnoticed, derived versions of known toxins and antitoxins, and putative novel TAS-like systems. In a broader context, the TAS belong to the resistome domain of the prokaryotic mobilome which includes partially selfish, addictive gene cassettes involved in various aspects of stress response and organized under the same general principles as the TAS. The "selfish altruism", or "responsible selfishness", of TAS-like systems appears to be a defining feature of the resistome and an important characteristic of the entire prokaryotic pan-genome given that in the prokaryotic world the mobilome and the "stable" chromosomes form a dynamic continuum.</p> <p>Reviewers</p> <p>This paper was reviewed by Kenn Gerdes (nominated by Arcady Mushegian), Daniel Haft, Arcady Mushegian, and Andrei Osterman. For full reviews, go to the Reviewers' Reports section.</p
    corecore