3 research outputs found

    The Biology and Therapeutic Applications of Red Blood Cell Extracellular Vesicles

    Get PDF
    This chapter focuses on the biology of red blood cell extracellular vesicles (RBCEVs) in normal and diseased conditions, and the potential application of RBCEVs in treatment. Extracellular vesicles (EVs) refer to membranous vesicles secreted by cells into the extracellular environment. EV biology belongs to a rapidly developing field in biomedical sciences. EVs represent a natural mode of cell-to-cell communication, which makes them suitable for delivery of therapeutic agents, such as nucleic acids and proteins, in the body. In particular, RBCEVs feature a wide range of benefits in drug delivery as compared to extracellular vesicles derived from other cell types. In comparison to other delivery systems currently available, RBCEVs are nontoxic, low immunogenic, conveniently obtainable, and easy to use and store. Therefore, RBCEVs boast promising and exceptional advantages in overcoming various limitations of conventional therapeutics

    Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b

    No full text
    Tumour cells release large quantities of extracellular vesicles (EVs) to mediate their interactions with other cells in the tumour microenvironment. To identify host cells that naturally take up EVs from tumour cells, we created breast cancer cell lines secreting fluorescent EVs. These fluorescent EVs are taken up most robustly by fibroblasts within the tumour microenvironment. RNA sequencing indicated that miR-125b is one of the most abundant microRNAs secreted by mouse triple-negative breast cancer 4T1 and 4TO7 cells. Treatment with 4T1 EVs leads to an increase in fibroblast activation in isogenic 4TO7 tumours, which is reversed by blocking miR-125b in 4T1 EVs; hence, miR-125b delivery by EVs is responsible for fibroblast activation in mouse tumour models. miR-125b is also secreted by human breast cancer cells and the uptake of EVs from these cells significantly increases cellular levels of miR-125b and expression of multiple cancer-associated fibroblast markers in resident fibroblasts. Overexpression of miR-125b in both mouse and human fibroblasts leads to an activated phenotype similar to the knockdown of established miR-125b target mRNAs. These data indicate that miR-125b is transferred through EVs from breast cancer cells to normal fibroblasts within the tumour microenvironment and contributes to their development into cancer-associated fibroblasts
    corecore