4 research outputs found

    Highly sensitive luminescence nanothermometry and thermal imaging facilitated by phase transition

    Get PDF
    Currently available temperature measurements or imaging at nano-micro scale are limited to fluorescent molecules and luminescent nanocrystals, whose spectral properties respond to temperature variation. The principle of operation of these conventional temperature probes is typically related to temperature induced multiphonon quenching or temperature dependent energy transfers, therefore, above 12%/K sensitivity and high thermal resolution remain a serious challenge. Here we demonstrate a novel class of highly sensitive thermographic phosphors operating in room temperature range with sub-kelvin thermal resolution, whose temperature readings are reproducible, luminescence is photostable and brightness is not compromised by thermal quenching. Corroborated with phase transition structural characterization and high spatio-temporal temperature imaging, we demonstrated that optically active europium ions are highly and smoothly susceptible to monoclinic to tetragonal phase transition in nanocrystalline (54 ± 14 nm) LiYO2 host, which is evidenced by changed number and the splitting of Stark components as well as by smooth variation of contribution between magnetic and electric dipole transitions. Further, reducing the size of phosphor from bulk to nanocrystalline matrix, shifted the phase transition temperature from 100 °C down to room temperature. These findings provide insights into the mechanism underlaying phase transition based luminescence nanothermometry and motivate future research toward new, highly sensitive, high temporal and spatial resolution nano-thermometers aiming at precise studying heat generation or diffusion in numerous biological and technology applications

    (4 R

    Get PDF

    (4R*,4aR*,7aS*)-5-Oxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid

    Get PDF
    The asymmetric unit of the title compound, C17H15NO4, contains two independent molecules with similar geometric parameters. In both molecules, the conformation of the cyclohexene ring is half-chair, while the pyrrolidinone ring adopts an envelope conformation with the γ-carbon atom of the α-pyrrolidinone ring as the flap. In the crystal, O—H...O hydrogen bonds between the carboxylic and carbonyl groups link alternate independent molecules into chains propagating in the b-axis direction. The crystal packing also features weak C—H...π interactions
    corecore