428 research outputs found
Sub-electron Charge Relaxation via 2D Hopping Conductors
We have extended Monte Carlo simulations of hopping transport in completely
disordered 2D conductors to the process of external charge relaxation. In this
situation, a conductor of area shunts an external capacitor
with initial charge . At low temperatures, the charge relaxation process
stops at some "residual" charge value corresponding to the effective threshold
of the Coulomb blockade of hopping. We have calculated the r.m.s value
of the residual charge for a statistical ensemble of capacitor-shunting
conductors with random distribution of localized sites in space and energy and
random , as a function of macroscopic parameters of the system. Rather
unexpectedly, has turned out to depend only on some parameter
combination: for negligible Coulomb interaction
and for substantial interaction. (Here
is the seed density of localized states, while is the
dielectric constant.) For sufficiently large conductors, both functions
follow the power law , but with different
exponents: for negligible and
for significant Coulomb interaction. We have been able to derive this law
analytically for the former (most practical) case, and also explain the scaling
(but not the exact value of the exponent) for the latter case. In conclusion,
we discuss possible applications of the sub-electron charge transfer for
"grounding" random background charge in single-electron devices.Comment: 12 pages, 5 figures. In addition to fixing minor typos and updating
references, the discussion has been changed and expande
A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport
We have extended our supercomputer-enabled Monte Carlo simulations of hopping
transport in completely disordered 2D conductors to the case of substantial
electron-electron Coulomb interaction. Such interaction may not only suppress
the average value of hopping current, but also affect its fluctuations rather
substantially. In particular, the spectral density of current
fluctuations exhibits, at sufficiently low frequencies, a -like increase
which approximately follows the Hooge scaling, even at vanishing temperature.
At higher , there is a crossover to a broad range of frequencies in which
is nearly constant, hence allowing characterization of the current
noise by the effective Fano factor F\equiv S_I(f)/2e \left. For
sufficiently large conductor samples and low temperatures, the Fano factor is
suppressed below the Schottky value (F=1), scaling with the length of the
conductor as . The exponent is significantly
affected by the Coulomb interaction effects, changing from when such effects are negligible to virtually unity when they are
substantial. The scaling parameter , interpreted as the average
percolation cluster length along the electric field direction, scales as when Coulomb interaction effects are negligible
and when such effects are substantial, in
good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference
A Numerical Study of Transport and Shot Noise at 2D Hopping
We have used modern supercomputer facilities to carry out extensive Monte
Carlo simulations of 2D hopping (at negligible Coulomb interaction) in
conductors with the completely random distribution of localized sites in both
space and energy, within a broad range of the applied electric field and
temperature , both within and beyond the variable-range hopping region. The
calculated properties include not only dc current and statistics of localized
site occupation and hop lengths, but also the current fluctuation spectrum.
Within the calculation accuracy, the model does not exhibit noise, so
that the low-frequency noise at low temperatures may be characterized by the
Fano factor . For sufficiently large samples, scales with conductor
length as , where , and
parameter is interpreted as the average percolation cluster length. At
relatively low , the electric field dependence of parameter is
compatible with the law which follows from directed
percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference
The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra
Using the combined spectral and spatial resolving power of the Low Energy
Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from
the bright central source of NGC 1068 (Primary region), and from a fainter
bright spot 4" to the NE (Secondary region). Both spectra are dominated by line
emission from H- and He-like ions of C through S, and from Fe L-shell ions, but
also include narrow radiative recombination continua, indicating that most of
the soft X-ray emission arises in low-temperature (kT few eV) photoionized
plasma. We confirm the conclusions of Kinkhabwala et al. (2002), based on
XMM-Newton RGS observations, that the entire nuclear spectrum can be explained
by recombination/radiative cascade following photoionization, and radiative
decay following photoexcitation, with no evidence for hot, collisionally
ionized plasma. In addition, this model also provides an excellent fit to the
spectrum of the Secondary region, albeit with radial column densities a factor
of three lower, as would be expected given its distance from the source of the
ionizing continuum. The remarkable overlap and kinematical agreement of the
optical and X-ray line emission, coupled with the need for a distribution of
ionization parameter to explain the X-ray spectra, collectively imply the
presence of a distribution of densities (over a few orders of magnitude) at
each radius in the ionization cone. Relative abundances of all elements are
consistent with Solar abundance, except for N, which is 2-3 times Solar. The
long wavelength spectrum beyond 30 A is rich of L-shell transitions of Mg, Si,
S, and Ar, and M-shell transitions of Fe. The velocity dispersion decreases
with increasing ionization parameter, as deduced from these long wavelength
lines and the Fe-L shell lines.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Coulomb Drag for Strongly Localized Electrons: Pumping Mechanism
The mutual influence of two layers with strongly loclized electrons is
exercised through the random Coulomb shifts of site energies in one layer
caused by electron hops in the other layer. We trace how these shifts give rise
to a voltage drop in the passive layer, when a current is passed through the
active layer. We find that the microscopic origin of drag lies in the time
correlations of the occupation numbers of the sites involved in a hop. These
correlations are neglected within the conventional Miller-Abrahams scheme for
calculating the hopping resistance.Comment: 5 pages, 3 figure
Direct Signature of Evolving Gravitational Potential from Cosmic Microwave Background
We show that time dependent gravitational potential can be directly detected
from the cosmic microwave background (CMB) anisotropies. The signature can be
measured by cross-correlating the CMB with the projected density field
reconstructed from the weak lensing distortions of the CMB itself. The
cross-correlation gives a signal whenever there is a time dependent
gravitational potential. This method traces dark matter directly and has a well
defined redshift distribution of the window projecting over the density
perturbations, thereby avoiding the problems plaguing other proposed
cross-correlations. We show that both MAP and Planck will be able to probe this
effect for observationally relevant curvature and cosmological constant models,
which will provide additional constraints on the cosmological parameters.Comment: 4 pages, 2 figures. Submitted to PR
Statistical properties of giant pulses from the Crab pulsar
We have studied the statistics of giant pulses from the Crab pulsar for the
first time with particular reference to their widths. We have analyzed data
collected during 3.5 hours of observations conducted with the Westerbork
Synthesis Radio Telescope operated in a tied-array mode at a frequency of 1200
MHz. The PuMa pulsar backend provided voltage recording of X and Y linear
polarization states in two conjugate 10 MHz bands. We restricted the time
resolution to 4 microseconds to match the scattering on the interstellar
inhomogeneities. In total about 18000 giant pulses (GP) were detected in full
intensity with a threshold level of 6 sigma. Cumulative probability
distributions (CPD) of giant pulse energies were analyzed for groups of GPs
with different effective widths in the range 4 to 65 microseconds. The CPDs
were found to manifest notable differences for the different GP width groups.
The slope of a power-law fit to the high-energy portion of the CPDs evolves
from -1.7 to -3.2 when going from the shortest to the longest GPs. There are
breaks in the CPD power-law fits indicating flattening at low energies with
indices varying from -1.0 to -1.9 for the short and long GPs respectively. The
GPs with a stronger peak flux density were found to be of shorter duration. We
compare our results with previously published data and discuss the importance
of these peculiarities in the statistical properties of GPs for the heoretical
understanding of the emission mechanism responsible for GP generation.Comment: 5 pages, 2 figures. Accepted by Astronomy and Astrophysic
Giant Pulses -- the Main Component of the Radio Emission of the Crab Pulsar
The paper presents an analysis of dual-polarization observations of the Crab
pulsar obtained on the 64-m Kalyazin radio telescope at 600 MHz with a time
resolution of 250 ns. A lower limit for the intensities of giant pulses is
estimated by assuming that the pulsar radio emission in the main pulse and
interpulse consists entirely of giant radio pulses; this yields estimates of
100 Jy and 35 Jy for the peak flux densities of giant pulses arising in the
main pulse and interpulse, respectively. This assumes that the normal radio
emission of the pulse occurs in the precursor pulse. In this case, the
longitudes of the giant radio pulses relative to the profile of the normal
radio emission turn out to be the same for the Crab pulsar and the millisecond
pulsar B1937+21, namely, the giant pulses arise at the trailing edge of the
profile of the normal radio emission. Analysis of the distribution of the
degree of circular polarization for the giant pulses suggests that they can
consist of a random mixture of nanopulses with 100% circular polarization of
either sign, with, on average, hundreds of such nanopulses within a single
giant pulse.Comment: 13 pages, 6 figures (originally published in Russian in
Astronomicheskii Zhurnal, 2006, vol. 83, No. 1, pp. 62-69) translated by
Denise Gabuzd
- …