4 research outputs found

    Graph theoretic topology of the Great but small Barrier Reef world

    No full text
    The transport of larvae between coral reefs is critical to the functioning of Australia's Great Barrier Reef (GBR) because it determines recruitment rates and genetic exchange. One way of modelling the transport of larvae from one reef to another is to use information about currents. However the connectivity relationships of the entire system have not been fully examined. Graph theory provides a framework for the representation and analysis of connections via larval transport. In the past, the geometric arrangement (topology) of biological systems, such as food webs and neural networks, has revealed a common set of characteristics known as the 'small world' property. We use graph theory to examine and describe the topology and connectivity of a species living in 321 reefs in the central section of the GBR over 32 years. This section of the GBR can be described by a directional weighted graph, and we discovered that it exhibits scale-free small-world characteristics. The conclusion that the GBR is a small-world network for biological organisms is robust to variation in both the life history of the species modelled and yearly variation in hydrodynamics. The GBR is the first reported mesoscale biological small-world network
    corecore