141 research outputs found
Genetics and orofacial clefts: a clinical perspective
Orofacial clefts (OFCs) are the most common congenital craniofacial anomaly seen in humans. Most OFCs are sporadic and isolated - these are thought to be multifactorial in origin. Chromosomal and monogenic variants account for the syndromic forms and for some of the non-syndromic inherited forms. This review discusses the importance of genetic testing and the current clinical strategy to deliver a genomics service that is of direct benefit to patients and their families
Analysis of exome data in a UK cohort of 603 patients with syndromic orofacial clefting identifies causal molecular pathways
Orofacial cleft (OC) is a common congenital anomaly in humans, which has lifelong implications for affected individuals. This disorder can be classified as syndromic or non-syndromic depending on the presence or absence of additional physical or neurodevelopmental abnormalities, respectively. Non-syndromic cleft is often non-familial in nature and has a complex aetiology, whereas syndromic forms tend to be monogenic. Although individual OC-related syndromes have been frequently described in the medical literature, there has not been a comprehensive review across syndromes, thereby leaving a gap in our knowledge, which this paper aims to address. Six hundred and three patients with cleft-related human phenotype ontology terms were identified within the Deciphering Developmental Disorders study. Genes carrying pathogenic/likely pathogenic variants were identified and reviewed enabling a diagnostic yield of 36.5%. In total, 124 candidate genes for syndromic OC were identified, including 34 new genes that should be considered for inclusion in clinical clefting panels. Functional enrichment and gene expression analyses identified three key processes that were significantly overrepresented in syndromic OC gene lists: embryonic morphogenesis, protein stability and chromatin organization. Comparison with non-syndromic OC gene networks led us to propose that chromatin remodelling specifically contributes to the aetiology of syndromic OC. Disease-driven gene discovery is a valid approach to gene identification and curation of gene panels. Through this approach, we have started to unravel common molecular pathways contributing to syndromic orofacial clefting
A novel nonsense CDK5RAP2 mutation in a Somali child with primary microcephaly and sensorineural hearing loss
Primary microcephaly is a genetically heterogeneous condition characterized by reduced head circumference (-3 SDS or more) and mild-to-moderate learning disability. Here, we describe clinical and molecular investigations of a microcephalic child with sensorineural hearing loss. Although consanguinity was unreported initially, detection of 13.7 Mb of copy neutral loss of heterozygosity (cnLOH) on chromosome 9 implicated the CDK5RAP2 gene. Targeted sequencing identified a homozygous E234X mutation, only the third mutation to be described in CDK5RAP2, the first in an individual of non-Pakistani descent. Sensorineural hearing loss is not generally considered to be consistent with autosomal recessive microcephaly and therefore it seems likely that the deafness in this individual is caused by the co-occurrence of a further gene mutation, independent of CDK5RAP2. Nevertheless, further detailed clinical descriptions of rare CDK5RAP2 patients, including hearing assessments will be needed to resolve fully the phenotypic range associated with mutations in this gene. This study also highlights the utility of SNP-array testing to guide disease gene identification where an autosomal recessive condition is plausible
The phenotype of MEGF8-related Carpenter syndrome (CRPT2) is refined through the identification of eight new patients
Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder
A homozygous variant disrupting the PIGH start-codon is associated with developmental delay, epilepsy, and microcephaly.
Defective glycosylphosphatidylinositol (GPI)-anchor biogenesis can cause a spectrum of predominantly neurological problems. For eight genes critical to this biological process, disease associations are not yet reported. Scanning exomes from 7,833 parent-child trios and 1,792 singletons from the DDD study for biallelic variants in this gene-set uncovered a rare PIGH variant in a boy with epilepsy, microcephaly, and behavioral difficulties. Although only 2/2 reads harbored this c.1AĀ >Ā T transversion, the presence of ā¼25Ā Mb autozygosity at this locus implied homozygosity, which was confirmed using Sanger sequencing. A similarly-affected sister was also homozygous. FACS analysis of PIGH-deficient CHO cells indicated that cDNAs with c.1AĀ >Ā T could not efficiently restore expression of GPI-APs. Truncation of PIGH protein was consistent with the utilization of an in-frame start-site at codon 63. In summary, we describe siblings harboring a homozygous c.1AĀ >Ā T variant resulting in defective GPI-anchor biogenesis and highlight the importance of exploring low-coverage variants within autozygous regions
Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation
Following the diagnosis of a paediatric disorder caused by an apparently de novo mutation, a recurrence risk of 1ā2% is frequently quoted due to the possibility of parental germline mosaicism; but for any specific couple, this figure is usually incorrect. We present a systematic approach to providing individualized recurrence risk. By combining locus-specific sequencing of multiple tissues to detect occult mosaicism with long-read sequencing to determine the parent-of-origin of the mutation, we show that we can stratify the majority of couples into one of seven discrete categories associated with substantially different risks to future offspring. Among 58 families with a single affected offspring (representing 59 de novo mutations in 49 genes), the recurrence risk for 35 (59%) was decreased below 0.1%, but increased owing to parental mixed mosaicism for 5 (9%)āthat could be quantified in semen for paternal cases (recurrence risks of 5.6ā12.1%). Implementation of this strategy offers the prospect of driving a major transformation in the practice of genetic counselling
Blepharophimosis with intellectual disability and HelsmoortelāVan Der Aa Syndrome share episignature and phenotype
Blepharophimosis with intellectual disability (BIS) is a recently recognized disorder distinct from NicolaidesāBaraister syndrome that presents with distinct facial features of blepharophimosis, developmental delay, and intellectual disability. BIS is caused by pathogenic variants in SMARCA2, that encodes the catalytic subunit of the superfamily II helicase group of the BRG1 and BRMāassociated factors (BAF) forming the BAF complex, a chromatin remodeling complex involved in transcriptional regulation. Individuals bearing variants within the bipartite nuclear localization (BNL) signal domain of ADNP present with the neurodevelopmental disorder known as HelsmoortelāVan Der Aa Syndrome (HVDAS). Distinct DNA methylation profiles referred to as episignatures have been reported in HVDAS and BAF complex disorders. Due to molecular interactions between ADNP and BAF complex, and an overlapping craniofacial phenotype with narrowing of the palpebral fissures in a subset of patients with HVDAS and BIS, we hypothesized the possibility of a common phenotypeāspecific episignature. A distinct episignature was shared by 15 individuals with BISācausing SMARCA2 pathogenic variants and 12 individuals with class II HVDAS caused by truncating pathogenic ADNP variants. This represents first evidence of a sensitive phenotypeāspecific episignature biomarker shared across distinct genetic conditions that also exhibit unique geneāspecific episignatures
PSMC5 insufficiency and P320R mutation impair proteasome function
The ubiquitin-proteasome system mediates the degradation of a wide variety of proteins. Proteasome dysfunction is associated with neurodegenerative diseases and neurodevelopmental disorders in humans. Here we identified mutations in PSMC5, an AAA ATPase subunit of the proteasome 19S regulatory particle, in individuals with neurodevelopmental disorders, which were initially considered as variants of unknown significance. We have now found heterozygotes with the following mutations: P320R (6 individuals), R325W, Q160A, and one nonsense mutation at Q69. We focused on understanding the functional consequence of PSMC5 insufficiency and the P320R mutation in cells and found that both impair proteasome function and activate apoptosis. Interestingly, the P320R mutation impairs proteasome function by weakening the association between the 19S regulatory particle and the 20S core particle. Our study supports that proteasome dysfunction is the pathogenic cause of neurodevelopmental disorders in individuals carrying PSMC5 variants
Structural analysis of pathogenic mutations in the DYRK1A gene in patients with developmental disorders.
Haploinsufficiency in DYRK1A is associated with a recognizable developmental syndrome, though the mechanism of action of pathogenic missense mutations is currently unclear. Here we present 19 de novo mutations in this gene, including five missense mutations, identified by the Deciphering Developmental Disorder study. Protein structural analysis reveals that the missense mutations are either close to the ATP or peptide binding-sites within the kinase domain, or are important for protein stability, suggesting they lead to a loss of the protein's function mechanism. Furthermore, there is some correlation between the magnitude of the change and the severity of the resultant phenotype. A comparison of the distribution of the pathogenic mutations along the length of DYRK1A with that of natural variants, as found in the ExAC database, confirms that mutations in the N-terminal end of the kinase domain are more disruptive of protein function. In particular, pathogenic mutations occur in significantly closer proximity to the ATP and the substrate peptide than the natural variants. Overall, we suggest that de novo dominant mutations in DYRK1A account for nearly 0.5% of severe developmental disorders due to substantially reduced kinase function
De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations
Mutations in more than a hundred genes have been reported to cause X-linked recessive intellectual disability (ID) mainly in males. In contrast, the number of identified X-linked genes in which de novo mutations specifically cause ID in females is limited. Here, we report 17 females with de novo loss-of-function mutations in USP9X, encoding a highly conserved deubiquitinating enzyme. The females in our study have a specific phenotype that includes ID/developmental delay (DD), characteristic facial features, short stature, and distinct congenital malformations comprising choanal atresia, anal abnormalities, post-axial polydactyly, heart defects, hypomastia, cleft palate/bifid uvula, progressive scoliosis, and structural brain abnormalities. Four females from our cohort were identified by targeted genetic testing because their phenotype was suggestive for USP9X mutations. In several females, pigment changes along Blaschko lines and body asymmetry were observed, which is probably related to differential (escape from) X-inactivation between tissues. Expression studies on both mRNA and protein level in affected-female-derived fibroblasts showed significant reduction of USP9X level, confirming the loss-of-function effect of the identified mutations. Given that some features of affected females are also reported in known ciliopathy syndromes, we examined the role of USP9X in the primary cilium and found that endogenous USP9X localizes along the length of the ciliary axoneme, indicating that its loss of function could indeed disrupt cilium-regulated processes. Absence of dysregulated ciliary parameters in affected female-derived fibroblasts, however, points toward spatiotemporal specificity of ciliary USP9X (dys-)function
- ā¦