397 research outputs found

    Deep learning approach for breast cancer diagnosis

    Full text link
    Breast cancer is one of the leading fatal disease worldwide with high risk control if early discovered. Conventional method for breast screening is x-ray mammography, which is known to be challenging for early detection of cancer lesions. The dense breast structure produced due to the compression process during imaging lead to difficulties to recognize small size abnormalities. Also, inter- and intra-variations of breast tissues lead to significant difficulties to achieve high diagnosis accuracy using hand-crafted features. Deep learning is an emerging machine learning technology that requires a relatively high computation power. Yet, it proved to be very effective in several difficult tasks that requires decision making at the level of human intelligence. In this paper, we develop a new network architecture inspired by the U-net structure that can be used for effective and early detection of breast cancer. Results indicate a high rate of sensitivity and specificity that indicate potential usefulness of the proposed approach in clinical use

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Assessing the Potential of Deep Learning for Emulating Cloud Superparameterization in Climate Models with Real-Geography Boundary Conditions

    Full text link
    We explore the potential of feed-forward deep neural networks (DNNs) for emulating cloud superparameterization in realistic geography, using offline fits to data from the Super Parameterized Community Atmospheric Model. To identify the network architecture of greatest skill, we formally optimize hyperparameters using ~250 trials. Our DNN explains over 70 percent of the temporal variance at the 15-minute sampling scale throughout the mid-to-upper troposphere. Autocorrelation timescale analysis compared against DNN skill suggests the less good fit in the tropical, marine boundary layer is driven by neural network difficulty emulating fast, stochastic signals in convection. However, spectral analysis in the temporal domain indicates skillful emulation of signals on diurnal to synoptic scales. A close look at the diurnal cycle reveals correct emulation of land-sea contrasts and vertical structure in the heating and moistening fields, but some distortion of precipitation. Sensitivity tests targeting precipitation skill reveal complementary effects of adding positive constraints vs. hyperparameter tuning, motivating the use of both in the future. A first attempt to force an offline land model with DNN emulated atmospheric fields produces reassuring results further supporting neural network emulation viability in real-geography settings. Overall, the fit skill is competitive with recent attempts by sophisticated Residual and Convolutional Neural Network architectures trained on added information, including memory of past states. Our results confirm the parameterizability of superparameterized convection with continents through machine learning and we highlight advantages of casting this problem locally in space and time for accurate emulation and hopefully quick implementation of hybrid climate models.Comment: 32 Pages, 13 Figures, Revised Version Submitted to Journal of Advances in Modeling Earth Systems April 202

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Deep Memory Networks for Attitude Identification

    Full text link
    We consider the task of identifying attitudes towards a given set of entities from text. Conventionally, this task is decomposed into two separate subtasks: target detection that identifies whether each entity is mentioned in the text, either explicitly or implicitly, and polarity classification that classifies the exact sentiment towards an identified entity (the target) into positive, negative, or neutral. Instead, we show that attitude identification can be solved with an end-to-end machine learning architecture, in which the two subtasks are interleaved by a deep memory network. In this way, signals produced in target detection provide clues for polarity classification, and reversely, the predicted polarity provides feedback to the identification of targets. Moreover, the treatments for the set of targets also influence each other -- the learned representations may share the same semantics for some targets but vary for others. The proposed deep memory network, the AttNet, outperforms methods that do not consider the interactions between the subtasks or those among the targets, including conventional machine learning methods and the state-of-the-art deep learning models.Comment: Accepted to WSDM'1

    Neural Interactive Collaborative Filtering

    Full text link
    In this paper, we study collaborative filtering in an interactive setting, in which the recommender agents iterate between making recommendations and updating the user profile based on the interactive feedback. The most challenging problem in this scenario is how to suggest items when the user profile has not been well established, i.e., recommend for cold-start users or warm-start users with taste drifting. Existing approaches either rely on overly pessimistic linear exploration strategy or adopt meta-learning based algorithms in a full exploitation way. In this work, to quickly catch up with the user's interests, we propose to represent the exploration policy with a neural network and directly learn it from the feedback data. Specifically, the exploration policy is encoded in the weights of multi-channel stacked self-attention neural networks and trained with efficient Q-learning by maximizing users' overall satisfaction in the recommender systems. The key insight is that the satisfied recommendations triggered by the exploration recommendation can be viewed as the exploration bonus (delayed reward) for its contribution on improving the quality of the user profile. Therefore, the proposed exploration policy, to balance between learning the user profile and making accurate recommendations, can be directly optimized by maximizing users' long-term satisfaction with reinforcement learning. Extensive experiments and analysis conducted on three benchmark collaborative filtering datasets have demonstrated the advantage of our method over state-of-the-art methods

    Mechanical versus thermodynamical melting in pressure-induced amorphization: the role of defects

    Full text link
    We study numerically an atomistic model which is shown to exhibit a one--step crystal--to--amorphous transition upon decompression. The amorphous phase cannot be distinguished from the one obtained by quenching from the melt. For a perfectly crystalline starting sample, the transition occurs at a pressure at which a shear phonon mode destabilizes, and triggers a cascade process leading to the amorphous state. When defects are present, the nucleation barrier is greatly reduced and the transformation occurs very close to the extrapolation of the melting line to low temperatures. In this last case, the transition is not anticipated by the softening of any phonon mode. Our observations reconcile different claims in the literature about the underlying mechanism of pressure amorphization.Comment: 7 pages, 7 figure

    The Development of Intensive Care Unit Acquired Hypernatremia Is Not Explained by Sodium Overload or Water Deficit:A Retrospective Cohort Study on Water Balance and Sodium Handling

    Get PDF
    Background. ICU acquired hypernatremia (IAH, serum sodium concentration (sNa) ≥ 143 mmol/L) is mainly considered iatrogenic, induced by sodium overload and water deficit. Main goal of the current paper was to answer the following questions: Can the development of IAH indeed be explained by sodium intake and water balance? Or can it be explained by renal cation excretion? Methods. Two retrospective studies were conducted: a balance study in 97 ICU patients with and without IAH and a survey on renal cation excretion in 115 patients with IAH. Results. Sodium intake within the first 48 hours of ICU admission was 12.5 [9.3–17.5] g in patients without IAH (n=50) and 15.8 [9–21.9] g in patients with IAH (n=47), p=0.13. Fluid balance was 2.3 [1–3.7] L and 2.5 [0.8–4.2] L, respectively, p=0.77. Urine cation excretion (urine Na + K) was < sNa in 99 out of 115 patients with IAH. Severity of illness was the only independent variable predicting development of IAH and low cation excretion, respectively. Conclusion. IAH is not explained by sodium intake or fluid balance. Patients with IAH are characterized by low urine cation excretion, despite positive fluid balances. The current paradigm does not seem to explain IAH to the full extent and warrants further studies on sodium handling in ICU patients

    Predicting the Propagation of Acoustic Waves using Deep Convolutional Neural Networks

    Get PDF
    A novel approach for numerically propagating acoustic waves in two-dimensional quiescent media has been developed through a fully convolutional multi-scale neural network. This data-driven method managed to produce accurate results for long simulation times with a database of Lattice Boltzmann temporal simulations of propagating Gaussian Pulses, even in the case of initial conditions unseen during training time, such as the plane wave configuration or the two initial Gaussian pulses of opposed amplitudes. Two different choices of optimization objectives are compared, resulting in an improved prediction accuracy when adding the spatial gradient difference error to the traditional mean squared error loss function. Further accuracy gains are observed when performing an a posteriori correction on the neural network prediction based on the conservation of acoustic energy, indicating the benefit of including physical information in data-driven methods
    corecore