228 research outputs found

    Ultrasonic Characterization of Porosity in Composite Materials by Time Delay Spectrometry

    Get PDF
    The presence of porosity in a wide range of materials, whether ceramics, steel or fiber reinforced composites, has a dramatic effect on the strength and mechanical properties of that material. Therefore, the presence of any porosity in a composite laminate during the manufacture of aerospace components is a basis for component rejection

    Synthesis of Glass Nanofibers Using Femtosecond Laser Radiation Under Ambient Condition

    Get PDF
    We report the unique growth of nanofibers in silica and borosilicate glass using femtosecond laser radiation at 8 MHz repetition rate and a pulse width of 214 fs in air at atmospheric pressure. The nanofibers are grown perpendicular to the substrate surface from the molten material in laser-drilled microvias where they intertwine and bundle up above the surface. The fibers are few tens of nanometers in thickness and up to several millimeters in length. Further, it is found that at some places nanoparticles are attached to the fiber surface along its length. Nanofiber growth is explained by the process of nanojets formed in the molten liquid due to pressure gradient induced from the laser pulses and subsequently drawn into fibers by the intense plasma pressure. The attachment of nanoparticles is due to the condensation of vapor in the plasma

    High-performance shape-engineerable thermoelectric painting

    Get PDF
    Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm(-2). This approach paves the way to designing materials and devices that can be easily transferred to other applications.ope

    Mesoscale engineering of photonic glass for tunable luminescence

    Get PDF
    The control of optical behavior of active materials through manipulation of microstructure has led to the development of high-performance photonic devices with enhanced integration density, improved quantum efficiencies and controllable colour output. However, the achievement of robust light-harvesting materials with tunable, broadband and flatten emission remains a long-standing goal, owing to the limited inhomogeneous broadening in ordinary hosts. Here, we describe an effective strategy for management of photon emission by manipulation of mesoscale heterogeneities in optically active materials. Importantly, this unique approach enables control of dopant-dopant and dopant-host interactions at the extended mesoscale. This allows generating intriguing optical phenomena such as high activation ratio of dopant (close to 100 %), dramatically inhomogeneous broadening (up to 480 nm), notable emission enhancement, and moreover, simultaneously extending emission bandwidth and flattening spectral shape in glass and fiber. Our results highlight that the findings connect the understanding and manipulation at the mesoscale realm to functional behavior at the macroscale, and the approach to managing the dopants based on mesoscale engineering may provide new opportunity for construction of robust fiber light source.National Natural Science Foundation of China (Grant IDs: 11474102, 51202180), the Chinese Program for New Century Excellent Talents in University (Grant ID: NCET-13-0221), Guangdong Natural Science Funds for Distinguished Young Scholar (Grant ID: S2013050014549), Fundamental Research Funds for the Central University, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, World Premier International Research Center Initiative (WPI), MEXT, JapanThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group
    corecore