1,344 research outputs found
Inductive queries for a drug designing robot scientist
It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments
First-principles study of (BiScO3){1-x}-(PbTiO3){x} piezoelectric alloys
We report a first-principles study of a class of (BiScO3)_{1-x}-(PbTiO3)_x
(BS-PT) alloys recently proposed by Eitel et al. as promising materials for
piezoelectric actuator applications. We show that (i) BS-PT displays very large
structural distortions and polarizations at the morphotropic phase boundary
(MPB) (we obtain a c/a of ~1.05-1.08 and P_tet of ~1.1 C/m^2); (ii) the
ferroelectric and piezoelectric properties of BS-PT are dominated by the onset
of hybridization between Bi/Pb-6p and O-2p orbitals, a mechanism that is
enhanced upon substitution of Pb by Bi; and (iii) the piezoelectric responses
of BS-PT and Pb(Zr_{1-x}Ti_x)O3 (PZT) at the MPB are comparable, at least as
far as the computed values of the piezoelectric coefficient d_15 are concerned.
While our results are generally consistent with experiment, they also suggest
that certain intrinsic properties of BS-PT may be even better than has been
indicated by experiments to date. We also discuss results for PZT that
demonstrate the prominent role played by Pb displacements in its piezoelectric
properties.Comment: 6 pages, with 3 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/ji_bi/index.htm
Phase transitions in BaTiO from first principles
We develop a first-principles scheme to study ferroelectric phase transitions
for perovskite compounds. We obtain an effective Hamiltonian which is fully
specified by first-principles ultra-soft pseudopotential calculations. This
approach is applied to BaTiO, and the resulting Hamiltonian is studied
using Monte Carlo simulations. The calculated phase sequence, transition
temperatures, latent heats, and spontaneous polarizations are all in good
agreement with experiment. The order-disorder vs.\ displacive character of the
transitions and the roles played by different interactions are discussed.Comment: 13 page
Effects of seed-placed sulfur forms on wheat, canola and pea yields in Saskatchewan soils
Non-Peer Reviewe
First-principles study of stability and vibrational properties of tetragonal PbTiO_3
A first-principles study of the vibrational modes of PbTiO_3 in the
ferroelectric tetragonal phase has been performed at all the main symmetry
points of the Brillouin zone (BZ). The calculations use the local-density
approximation and ultrasoft pseudopotentials with a plane-wave basis, and
reproduce well the available experimental information on the modes at the Gamma
point, including the LO-TO splittings. The work was motivated in part by a
previously reported transition to an orthorhombic phase at low temperatures
[(J. Kobayashi, Y. Uesu, and Y. Sakemi, Phys. Rev. B {\bf 28}, 3866 (1983)]. We
show that a linear coupling of orthorhombic strain to one of the modes at Gamma
plays a role in the discussion of the possibility of this phase transition.
However, no mechanical instabilities (soft modes) are found, either at Gamma or
at any of the other high-symmetry points of the BZ.Comment: 8 pages, two-column style with 3 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#ag_pbt
Broadening the Scope of Nanopublications
In this paper, we present an approach for extending the existing concept of
nanopublications --- tiny entities of scientific results in RDF representation
--- to broaden their application range. The proposed extension uses English
sentences to represent informal and underspecified scientific claims. These
sentences follow a syntactic and semantic scheme that we call AIDA (Atomic,
Independent, Declarative, Absolute), which provides a uniform and succinct
representation of scientific assertions. Such AIDA nanopublications are
compatible with the existing nanopublication concept and enjoy most of its
advantages such as information sharing, interlinking of scientific findings,
and detailed attribution, while being more flexible and applicable to a much
wider range of scientific results. We show that users are able to create AIDA
sentences for given scientific results quickly and at high quality, and that it
is feasible to automatically extract and interlink AIDA nanopublications from
existing unstructured data sources. To demonstrate our approach, a web-based
interface is introduced, which also exemplifies the use of nanopublications for
non-scientific content, including meta-nanopublications that describe other
nanopublications.Comment: To appear in the Proceedings of the 10th Extended Semantic Web
Conference (ESWC 2013
Crop response to seed-row placed sulfur fertilizers
Non-Peer Reviewe
Nanotube Piezoelectricity
We combine ab initio, tight-binding methods and analytical theory to study
piezoelectric effect of boron nitride nanotubes. We find that piezoelectricity
of a heteropolar nanotube depends on its chirality and diameter and can be
understood starting from the piezoelectric response of an isolated planar
sheet, along with a structure specific mapping from the sheet onto the tube
surface. We demonstrate that coupling between the uniaxial and shear
deformation are only allowed in the nanotubes with lower chiral symmetry. Our
study shows that piezoelectricity of nanotubes is fundamentally different from
its counterpart in three dimensional (3D) bulk materials.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX4 macros.
Also available at
http://www.physics.upenn.edu/~nsai/preprints/bn_piezo/index.htm
Semiconductor effective charges from tight-binding theory
We calculate the transverse effective charges of zincblende compound
semiconductors using Harrison's tight-binding model to describe the electronic
structure. Our results, which are essentially exact within the model, are found
to be in much better agreement with experiment than previous
perturbation-theory estimates. Efforts to improve the results by using more
sophisticated variants of the tight-binding model were actually less
successful. The results underline the importance of including quantities that
are sensitive to the electronic wavefunctions, such as the effective charges,
in the fitting of tight-binding models.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#jb_t
Pre-main-sequence Lithium Depletion
In this review I briefly discuss the theory of pre-main-sequence (PMS) Li
depletion in low-mass (0.075<M<1.2 Msun) stars and highlight those uncertain
parameters which lead to substantial differences in model predictions. I then
summarise observations of PMS stars in very young open clusters, clusters that
have just reached the ZAMS and briefly highlight recent developments in the
observation of Li in very low-mass PMS stars.Comment: 8 pages, invited review at "Chemical abundances and mixing in stars
in the Milky Way and its satellites", eds. L. Pasquini, S. Randich. ESO
Astrophysics Symposium (Springer-Verlag
- …