665 research outputs found
Predicting the Deforestation–Trend Under Different Carbon–Prices
Background: Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Results, Baseline scenario calculations show that close to 200mil ha or around 5% of today’s forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today’s forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US/year. On the other hand a carbon tax of 12 in 2005 to 4.3 billion US in 2100 due to decreasing deforestation speed. Conclusions, Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will generate budgetary revenues by the regions which are already poor. A combination of incentives and taxes could turn out to be a viable solution for this dilemma. Increasing the value of forest land and thereby make it less easily prone to deforestation would act as a strong incentive to increase productivity of agricultural and fuelwood production, which could be supported by revenues generated by the deforestation tax.Deforestation, Carbon Prices
CHP or biofuel production in Europe?
In this study, the opportunity to invest in combined heat and power (CHP) plants and second-generation biofuel production plants in Europe is investigated. To determine the number and type of production plants, a mixed integer linear model is used, based on minimization of the total cost of the whole suply chain. Different policy scenarios are studied with varying values of carbon cost and biofuel support. The study focuses on the type of technology to invest in and the CO2 emission substitution potential, at constant energy prices. The CHP plants and the biofuel production plants are competing for the same feedstock (forest biomass), which is available in limited quantities. The results show that CP plants are preferred over biofuel production plants at high carbon costs (over 50 EUR/tCO2) and low biofuel support (below 10 EUR/GJ), whereas more biofuel production plants would be set up at high biofuel support (over 15 EUR/GJ), irrespective of the carbon cost. Regarding the CO2 emission substitution potential, the highest potential can be reached at a high carbon cost and low biofuel support. It is concluded that there is a potential conflict of interest between policies promoting increased use of biofuels, and policies aiming at decreased CO2 emissions
Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation
Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water.Irrigation, Food supply, Integrated assessment, Water use intensity, Agricultural adaptation, Land scarcity, Partial equilibrium model, Resource /Energy Economics and Policy,
Status of RF power couplers for superconducting cavities at CERN
For LEP2 fixed RF power couplers of the open-ended coaxial line type with d.c. bias are used. The nominal power under matched conditions is about 120 kW at 352 MHz. However, to avoid ponderomotive instabilities, the cavities may not be detuned, i.e. the reactive beam loading cannot be compensated. The coupler is therefore exposed to standing waves with an equivalent power (travelling-wave (TW) producing the same field as the peak fields on the coupler line) of more than 200 kW. The final design of these couplers, their conditioning sequence and their actual performance are presented. For LHC a motor-driven mobile coupler is required to change the external cavity Q by a factor of four between beam injection and storage. During injection the forward power levels at 400 MHz are about 120 kW CW (for approximately 20 minutes) and 180 kW peak (for several milliseconds). Since practically all this RF power is reflected the equivalent travelling power is 480 kW and 720 kW, respectively. These couplers will be also provided with d.c. bias to suppress multipacting and ³deconditioning²
Full Counting Statistics of Spin Currents
We discuss how to detect fluctuating spin currents and derive full counting
statistics of electron spin transfers. It is interesting to consider several
detectors in series that simultaneously monitor different components of the
spins transferred. We have found that in general the statistics of the
measurement outcomes cannot be explained with the projection postulate and
essentially depends on the quantum dynamics of the detectors.Comment: twocolumns, 4 pages, 2 figure
Electron transport and current fluctuations in short coherent conductors
Employing a real time effective action formalism we analyze electron
transport and current fluctuations in comparatively short coherent conductors
in the presence of electron-electron interactions. We demonstrate that, while
Coulomb interaction tends to suppress electron transport, it may {\it strongly
enhance} shot noise in scatterers with highly transparent conducting channels.
This effect of excess noise is governed by the Coulomb gap observed in the
current-voltage characteristics of such scatterers. We also analyze the
frequency dispersion of higher current cumulants and emphasize a direct
relation between electron-electron interaction effects and current fluctuations
in disordered mesoscopic conductors.Comment: 16 pages, 4 figure
- …