209 research outputs found

    Breakdown of Hydrodynamics in the Radial Breathing Mode of a Strongly-Interacting Fermi Gas

    Full text link
    We measure the magnetic field dependence of the frequency and damping time for the radial breathing mode of an optically trapped, Fermi gas of 6^6Li atoms near a Feshbach resonance. The measurements address the apparent discrepancy between the results of Kinast et al., [Phys. Rev. Lett. {\bf 92}, 150402 (2004)] and those of Bartenstein et al., [Phys. Rev. Lett. {\bf 92}, 203201 (2004)]. Over the range of magnetic field from 770 G to 910 G, the measurements confirm the results of Kinast et al. Close to resonance, the measured frequencies are in excellent agreement with predictions for a unitary hydrodynamic gas. At a field of 925 G, the measured frequency begins to decrease below predictions. For fields near 1080 G, we observe a breakdown of hydrodynamic behavior, which is manifested by a sharp increase in frequency and damping rate. The observed breakdown is in qualitative agreement with the sharp transition observed by Bartenstein et al., at 910 G.Comment: 4 pages, 2 figures, 1 table. Revised in response to referees' Comments. Published in PRA(R

    Evidence for Superfluidity in a Resonantly Interacting Fermi Gas

    Full text link
    We observe collective oscillations of a trapped, degenerate Fermi gas of 6^6Li atoms at a magnetic field just above a Feshbach resonance, where the two-body physics does not support a bound state. The gas exhibits a radial breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the frequency of νH≡10νxνy/3=2830(20)\nu_H\equiv\sqrt{10\nu_x\nu_y/3}=2830(20) Hz predicted for a {\em hydrodynamic} Fermi gas with unitarity limited interactions. The measured damping times and frequencies are inconsistent with predictions for both the collisionless mean field regime and for collisional hydrodynamics. These observations provide the first evidence for superfluid hydrodynamics in a resonantly interacting Fermi gas.Comment: 5 pages, ReVTeX4, 2 eps figs. Resubmitted to PRL in response to referees' comments. Title and abstract changed. Corrected error in Table 1, atom numbers for 0.33 TF and 0.5 TF data were interchanged. Corrected typo in ref 3. Added new figure of damping time versus temperatur

    Scaling Flows and Dissipation in the Dilute Fermi Gas at Unitarity

    Full text link
    We describe recent attempts to extract the shear viscosity of the dilute Fermi gas at unitarity from experiments involving scaling flows. A scaling flow is a solution of the hydrodynamic equations that preserves the shape of the density distribution. The scaling flows that have been explored in the laboratory are the transverse expansion from a deformed trap ("elliptic flow"), the expansion from a rotating trap, and collective oscillations. We discuss advantages and disadvantages of the different experiments, and point to improvements of the theoretical analysis that are needed in order to achieve definitive results. A conservative bound based on the current data is that the minimum of the shear viscosity to entropy density ration is that eta/s is less or equal to 0.5 hbar/k_B.Comment: 32 pages, prepared for "BCS-BEC crossoverand the Unitary Fermi Gas", Lecture Notes in Physics, W. Zwerger (editor), Fig. 5 corrected, note added; final version, corrected typo in equ. 9

    Acoustic attenuation probe for fermion superfluidity in ultracold atom gases

    Full text link
    Dilute gas Bose-Einstein condensates (BEC's), currently used to cool fermionic atoms in atom traps, can also probe the superfluidity of these fermions. The damping rate of BEC-acoustic excitations (phonon modes), measured in the middle of the trap as a function of the phonon momentum, yields an unambiguous signature of BCS-like superfluidity, provides a measurement of the superfluid gap parameter and gives an estimate of the size of the Cooper-pairs in the BEC-BCS crossover regime. We also predict kinks in the momentum dependence of the damping rate which can reveal detailed information about the fermion quasi-particle dispersion relation.Comment: 4 pages, 2 figures. Revised versio

    Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms

    Full text link
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the variational Schwinger method, we construct approximate semi-analytical formulae for collective frequencies of the radial and the axial breathing modes of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. It is shown that the method gives nearly exact solutions.Comment: 11 page

    Feshbach Resonances and Medium Effects in ultracold atomic Gases

    Full text link
    We develop an effective low energy theory for multi-channel scattering of cold atomic alkali atoms with particular focus on Feshbach resonances. The scattering matrix is expressed in terms of observables only and the theory allows for the inclusion of many-body effects both in the open and in the closed channels. We then consider the frequency and damping of collective modes for Fermi gases and demonstrate how medium effects significantly increase the scattering rate determining the nature of the modes. Our results obtained with no fitting parameters are shown to compare well with experimental data.Comment: Presented at the 5th workshop on Critical Stability, Erice, Italy 13-17 October 2008. 8 pages, 3 figures. Figure caption correcte
    • …
    corecore