168 research outputs found

    Are controlled release scientists doing enough for our environment?

    Get PDF

    Development of IoT Service Classification Algorithm for Integrated Service Platform

    Get PDF
    Recently, with the appearance of the IoT paradigm, the existing Internet environment has changed with various things that connect with the Internet. The IoT paradigm is applied to various service such as smart homes, building management, surveillance services, smart farm, and so on. The environment of IoT services concerned on communication and interaction processes between different devices. To solve these complex problems, many researchers and service providers are focused on integrated service platform. However, previous studies did not consider problems such as service similarity and module reusability. In this paper, we focused on classification of services for providing reusability. And we propose classification algorithm that is based on detail operation steps of IoT services. To proof proposed classification algorithm, surveyed over 100 commercial IoT services are classified into 19 groups. The experimental results present each group is grouped together by their purpose

    Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery

    Get PDF
    Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles

    Surface Characterization of Biomaterials by Immunogold Staining - Quantitative Analysis

    Get PDF
    The labeling of target proteins by immunogold particles has been analyzed based on Einstein\u27s law of Brownian motion. The theory was confirmed from the experiments which employed antifibrinogen gold markers to label fibrinogen molecules adsorbed on the polyethylene surface. The theory predicts that the degree of labeling depends on the concentration of gold markers, temperature, medium viscosity, size of gold markers, and staining time. Of these factors most important is the concentration of immunogold particles. Small change in the marker concentration results in a significant variation in the staining efficiency when other variables are kept constant. The effect of temperature is always accompanied with that of the medium viscosity. There is a linear relationship between the degree of labeling and the temperature when the viscosity effect is combined. The staining of fibrinogen molecules adsorbed on the polyethylene surface at three different temperatures shows a temperature dependence which is in close agreement with the theory. The degree of labeling is inversely related to a square root of the size of gold markers. This analysis makes it possible to maximize the staining sensitivity and to improve the reproducibility of the labeling. Thus, the immunogold staining under a well defined condition allows quantification as well as positive identification and localization of target proteins. This technique has been used to study protein adsorption on biomaterials

    Measurement and Prediction of Pressure Drop in Pneumatic Conveying: Effect of Particle Characteristics, Mass Loading, and Reynolds Number

    Get PDF
    This paper reports the effect of Reynolds number, mass loading, and particle shape and size on pressure drop in a vertical gas-solids pneumatic conveying line. We isolate the effect of one variable while holding all others constant. A commonly used pressure drop correlation and a state-of-the-art multiphase computational fluid dynamics (CFD) models are then assessed by comparing their predictions to experimental data. Deficiencies in the models and the correlation are identified, and possible modifications are proposed. The most notable deficiency is the inability of both the experimental correlation and the CFD model to accurately predict the pressure drop for gas-solids flow with highly aspherical particles

    Recapitulation of complex transport and action of drugs at tumor microenvironment using tumor-microenvironment-on-chip

    Get PDF
    Targeted delivery aims to selectively distribute drugs to targeted tumor tissue but not to healthy tissue. This can address many of clinical challenges by maximizing the efficacy but minimizing the toxicity of anti-cancer drugs. However, complex tumor microenvironment poses various barriers hindering the transport of drugs and drug delivery systems. New tumor models that allow for the systematic study of these complex environments are highly desired to provide reliable test beds to develop drug delivery systems for targeted delivery. Recently, research efforts have yielded new in vitro tumor models, the so called tumor-microenvironment-on-chip, that recapitulate certain characteristics of the tumor microenvironment. These new models show benefits over other conventional tumor models, and have the potential to accelerate drug discovery and enable precision medicines. However, further research is warranted to overcome their limitations and to properly interpret the data obtained from these models. In this article, key features of the in vivo tumor microenvironment that are relevant to drug transport processes for targeted delivery was discussed, and the current status and challenges for developing in vitro transport model systems was reviewed

    Development and Evaluation of Transferrin-Stabilized Paclitaxel Nanocrystal Formulation

    Get PDF
    The aim of the present study was to prepare and evaluate a paclitaxel nanocrystal-based formulation stabilized by serum protein transferrin in a non-covalent manner. The pure paclitaxel nanocrystals were first prepared using an antisolvent precipitation method augmented by sonication. The serum protein transferrin was selected for use after evaluating the stabilizing effect of several serum proteins including albumin and immunoglobulin G. The formulation contained approximately 55~60% drug and was stable for at least 3 months at 4 °C. In vivo antitumor efficacy studies using mice inoculated with KB cells demonstrate significantly higher tumor inhibition rate of 45.1% for paclitaxel-transferrin formulation compared to 28.8% for paclitaxel nanosuspension treatment alone. Interestingly, the Taxol® formulation showed higher antitumor activity than the paclitaxel-transferrin formulation, achieving a 93.3% tumor inhibition rate 12 days post initial dosing. However, the paclitaxel-transferrin formulation showed a lower level of toxicity, which is indicated by steady increase in body weight of mice over the treatment period. In comparison, treatment with Taxol® resulted in toxicity issues as body weight decreased. These results suggest the potential benefit of using a serum protein in a non-covalent manner in conjunction with paclitaxel nanocrystals as a promising drug delivery model for anticancer therapy

    Phosphorylation of cotton cellulose with baker’s yeast hexokinase

    Get PDF
    Here we report for the first time on phosphorylation of cotton cellulose using baker’s yeast hexokinase and phosphoryl donor adenosine-50-triphosphate. An enzymatic assay was adopted for determination of the degree of hosphorylation of cellulose. This functional modification of cellulose resulted in improved colorability and flame resistance
    • …
    corecore