9 research outputs found
A Four-Year, Seven-State Reforestation Trial with Eastern Hemlocks (\u3cem\u3eTsuga canadensis\u3c/em\u3e) Resistant to Hemlock Woolly Adelgid (\u3cem\u3eAdelges tsugae\u3c/em\u3e)
We conducted over a decade of research into individual eastern hemlock (Tsuga canadensis; hemlock) trees that are potentially resistant to hemlock woolly adelgid (Adelges tsugae; HWA), an invasive xylem-feeding insect that is capable of rapidly killing even mature trees. Following clonal propagation of these individuals, in 2015 we planted size- and age-matched HWA-resistant and HWA-susceptible hemlocks in HWA-infested forest plots in seven states. In 2019, we re-surveyed the plots; 96% of HWA-resistant hemlocks survived compared to 48% of susceptible trees. The surviving HWA-resistant trees were also taller, produced more lateral growth, retained more foliage, and supported lower densities of the elongate hemlock scale Fiorinia externa, another invasive hemlock pest, than the surviving HWA-susceptible trees. Our results suggest that HWA management may benefit from additional research exploring the identification, characterization, and use of HWA-resistant eastern hemlocks in future reforestation efforts
Impact of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Infestation on the Jasmonic Acid-Elicited Defenses of Tsuga canadensis (Pinales: Pinaceae)
Hemlock woolly adelgid is an invasive piercing-sucking insect in eastern North America, which upon infestation of its main host, eastern hemlock (‘hemlock’), improves attraction and performance of folivorous insects on hemlock. This increased performance may be mediated by hemlock woolly adelgid feeding causing antagonism between the the jasmonic acid and other hormone pathways. In a common garden experiments using hemlock woolly adelgid infestation and induction with methyl jasmonate (MeJA) and measures of secondary metabolite contents and defense-associated enzyme activities, we explored the impact of hemlock woolly adelgid feeding on the local and systemic induction of jasmonic acid (JA)-elicited defenses. We found that in local tissue hemlock woolly adelgid or MeJA exposure resulted in unique induced phenotypes, whereas the combined treatment resulted in an induced phenotype that was a mixture of the two individual treatments. We also found that if the plant was infested with hemlock woolly adelgid, the systemic response of the plant was dominated by hemlock woolly adelgid, regardless of whether MeJA was applied. Interestingly, in the absence of hemlock woolly adelgid, hemlock plants had a very weak systemic response to MeJA. We conclude that hemlock woolly adelgid infestation prevents systemic induction of JA-elicited defenses. Taken together, compromised local JA-elicited defenses combined with weak systemic induction could be major contributors to increased folivore performance on hemlock woolly adelgid-infested hemlock
Facilitation between invasive herbivores: hemlock woolly adelgid increases gypsy moth preference for and performance on eastern hemlock
Interactions between invertebrate herbivores with different feeding modes are common on long‐lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy‐dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet‐feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock‐feeding folivores remains unknown. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field‐grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired‐choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid‐infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. Adelgid‐infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid‐infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid‐infested foliage gained more weight than larvae reared on uninfested control foliage. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range
Seasonal changes in eastern hemlock (\u3cem\u3eTsuga canadensis\u3c/em\u3e) foliar chemistry
Eastern hemlock (Tsuga canadensis (L.) Carriére; hemlock) is an eastern North American conifer threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). Changes in foliar terpenes and phenolics were evaluated in new (current year growth) and mature (1-year old growth) hemlock needles during the growing season and into plant dormancy. From April through September, foliar concentrations of non-volatile soluble phenolics, condensed tannins, lignin, mono- and sesquiterpenes α-pinene, camphene, isobornyl acetate, and diterpene resin were quantified. After September, additional analyses of metabolites that continued to differ significantly in new versus mature foliage were carried out. Total soluble phenolic concentration and condensed tannin concentration in new foliage remained low relative to mature foliage throughout the growing season and converged in December. Lignin concentration in new foliage converged with that of mature foliage by July. Concentrations of α-pinene, camphene, isobornyl acetate, and diterpene resin in new foliage converged with mature foliage within one month of budbreak. The convergence of terpene concentrations in new and mature foliage suggests that these metabolites may play a role in herbivore defense during the peak growing season. Conversely, soluble phenolics, including condensed tannins, may defend foliage from herbivory outside of the spring growth period
Impact of chronic stylet-feeder infestation on folivore-induced signaling and defenses in a conifer
Our understanding of how conifers respond biochemically to multiple simultaneous herbivore attacks is lacking. Eastern hemlock (Tsuga canadensis; \u27hemlock\u27) is fed on by hemlock woolly adelgid (Adelges tsugae; \u27adelgid\u27) and by later-instar gypsy moth (Lymantria dispar; \u27gypsy moth\u27) caterpillars. The adelgid is a stylet-feeding insect that causes a salicylic acid (SA)-linked response in hemlock, and gypsy moth larvae are folivores that presumably cause a jasmonic acid (JA)-linked response. This system presents an opportunity to study how invasive herbivore-herbivore interactions mediated through host biochemical responses. We used a factorial field experiment to challenge chronically adelgid-infested hemlocks with gypsy moth caterpillars. We quantified 17 phytohormones, 26 phenolic and terpene metabolites, and proanthocyanidin, cell wall-bound (CW-bound) phenolic, and lignin contents. Foliage infested with adelgid only accumulated gibberellins and SA; foliage challenged by gypsy moth only accumulated JA phytohormones. Gypsy moth folivory on adelgid-infested foliage reduced the accumulation of JA phytohormones and increased the SA levels. Both herbivores increased CW-bound phenolics and gypsy moth increased lignin content when feeding alone but not when feeding on adelgid-infested foliage. Our study illustrates the importance of understanding the biochemical mechanisms and signaling antagonism underlying tree responses to multiple stresses and of disentangling local and systemic stress signaling in trees