1,192 research outputs found

    Plasma Lithography Surface Patterning for Creation of Cell Networks

    Get PDF
    Systematic manipulation of a cell microenvironment with micro- and nanoscale resolution is often required for deciphering various cellular and molecular phenomena. To address this requirement, we have developed a plasma lithography technique to manipulate the cellular microenvironment by creating a patterned surface with feature sizes ranging from 100 nm to millimeters. The goal of this technique is to be able to study, in a controlled way, the behaviors of individual cells as well as groups of cells and their interactions

    SARS-related Virus Predating SARS Outbreak, Hong Kong

    Get PDF
    Using immunofluorescence and neutralization assays, we detected antibodies to human severe acute respiratory syndrome–associated coronavirus (SARS-CoV) and/or animal SARS-CoV–like virus in 17 (1.8%) of 938 adults recruited in 2001. This finding suggests that a small proportion of healthy persons in Hong Kong had been exposed to SARS-related viruses at least 2 years before the recent SARS outbreak

    A Mechanostimulation System for Revealing Intercellular Calcium Communication in HUVEC Networks

    Get PDF
    Abstract -This paper reports a mechanostimulation system for studying mechanically induced intercellular calcium signaling in networks of human umbilical vein endothelial cells (HUVECs). By incorporating a capacitive (comb drive) force probe and plasma lithography cell patterning, the roles of biophysical factors, including force, duration, and network architecture, in calcium intercellular communication can be investigated systematically. Particularly, we observed cancellation of calcium waves in linear networks and bi-directional splitting in cross junctions. The effects of key biophysical factors on intercellular calcium wave propagation were studied. These results demonstrate the applicability of the mechanostimulation system in studying intercellular calcium signaling and reveal the robustness of calcium signaling in HUVEC networks, which mimics the vasculature

    Cue-Polarized Transport of β-actin mRNA Depends on 3′UTR and Microtubules in Live Growth Cones

    Get PDF
    Guidance cues trigger fast responses in axonal growth cones such as directional turning and collapse that require local protein synthesis. An attractive cue-gradient, such as Netrin-1, triggers de novo synthesis of β-actin localized to the near-side compartment of the growth cone that promotes F-actin assembly and attractive steering. How this precise spatial asymmetry in mRNA translation arises across the small expanse of the growth cone is poorly understood. Pre-localized mRNAs in the vicinity of activated receptors could be selectively translated and/or new mRNAs could be trafficked into the area. Here we have performed live imaging of fluorescent-tagged β-actin mRNA to investigate mRNA trafficking dynamics in Xenopus retinal ganglion cell (RGC) axons and growth cones in response to Netrin-1. A Netrin-1 gradient was found to elicit the transport of β-actin mRNA granules to the near-side of growth cones within a 4–7 min window. This polarized mRNA trafficking depended on the 3′ untranslated region (UTR) since mRNA-Δ3′UTR mutant failed to exhibit cue-induced localization. Global application of Netrin-1 significantly increased the anterograde movement of β-actin mRNA along axons and also promoted microtubule-dependent mRNA excursions from the central domain of the growth cone into the periphery (filopodia and lamellipodia). Dual channel imaging revealed β-actin mRNA riding behind the microtubule plus-end tracking protein, EB1, in movements along dynamic microtubules into filopodia. The mRNA-EB1 movements were unchanged by a Netrin-1 gradient indicating the dynamic microtubules themselves do not underlie the cue-induced polarity of RNA movement. Finally, fast-moving elongated “worm-like” trains of Cy3-RNA, distinct from mitochondria, were seen transporting RNA along axons in vitro and in vivo suggesting the existence of a novel transport organelle. Overall, the results provide evidence that the axonal trafficking of β-actin mRNA can be regulated by the guidance cue Netrin-1 to transduce the polarity of an extracellular stimulus and that the 3′UTR is essential for this cue-induced regulation

    Rapid Increase in the Height and Width of the Upper Chest in Adolescents with Primary Spontaneous Pneumothorax

    Get PDF
    BackgroundWe determined the chest height in a cohort of patients with primary spontaneous pneumothorax (PSP) who had received chest radiographic examinations prior to the attack. The aim of this study was to determine when their chest height began to change and how this was related to the PSP.MethodsFrom June 2009 to February 2012, the chest posteroanterior radiographs of 156 patients with PSP (Group 1) were reviewed. Among another 3134 patients with PSP, we identified 52 patients who had a chest posteroanterior radiograph prior to the attack (Group 2). We also recruited 196 controls for comparison (Group 3). The chest height and chest width at different levels were measured and analyzed.ResultsBefore 14 years of age, the chest height of patients in Group 2 was no different from that of patients in Group 3. By the age of 14 years, however, the chest height and upper chest width of patients with PSP was significantly higher than that of the normal controls. The difference from normal chest height did not increase at adulthood.ConclusionThe rapid increase in chest height and upper chest width is a unique finding in patients with PSP. It might be attributable to the occurrence of PSP. This finding may also help to identify patients who are at risk of PSP

    Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations

    Get PDF
    A structural model of carbon nanocoils (CNCs) on the basis of carbon nanotubes (CNTs) was proposed. The Young’s moduli and spring constants of CNCs were computed and compared with those of CNTs. Upon elongation and compression, CNCs exhibit superelastic properties that are manifested by the nearly invariant average bond lengths and the large maximum elastic strain limit. Analysis of bond angle distributions shows that the three-dimensional spiral structures of CNCs mainly account for their unique superelasticity

    \u3cem\u3eLkb1\u3c/em\u3e Inactivation Drives Lung Cancer Lineage Switching Governed by Polycomb Repressive Complex 2

    Get PDF
    Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours
    • …
    corecore