17 research outputs found

    Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson's Disease

    Get PDF
    Background: Spinal cord stimulation (SCS) exerts neuroprotective effects in animal models of Parkinson’s disease (PD). Conventional stimulation techniques entail limited stimulation time and restricted movement of animals, warranting the need for optimizing the SCS regimen to address the progressive nature of the disease and to improve its clinical translation to PD patients. Objective: Recognizing the limitations of conventional stimulation, we now investigated the effects of continuous SCS in freely moving parkinsonian rats. Methods: We developed a small device that could deliver continuous SCS. At the start of the experiment, thirty female Sprague-Dawley rats received the dopamine (DA)-depleting neurotoxin, 6-hydroxydopamine, into the right striatum. The SCS device was fixed below the shoulder area of the back of the animal, and a line from this device was passed under the skin to an electrode that was then implanted epidurally over the dorsal column. The rats were divided into three groups: control, 8-h stimulation, and 24-h stimulation, and behaviorally tested then euthanized for immunohistochemical analysis. Results: The 8- and 24-h stimulation groups displayed significant behavioral improvement compared to the control group. Both SCS-stimulated groups exhibited significantly preserved tyrosine hydroxylase (TH)-positive fibers and neurons in the striatum and substantia nigra pars compacta (SNc), respectively, compared to the control group. Notably, the 24-h stimulation group showed significantly pronounced preservation of the striatal TH-positive fibers compared to the 8-h stimulation group. Moreover, the 24-h group demonstrated significantly reduced number of microglia in the striatum and SNc and increased laminin-positive area of the cerebral cortex compared to the control group. Conclusions: This study demonstrated the behavioral and histological benefits of continuous SCS in a time-dependent manner in freely moving PD animals, possibly mediated by anti-inflammatory and angiogenic mechanisms

    Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats

    Get PDF
    Background: The major surgical treatment for Parkinson's disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25-0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25-0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device

    Inverted gull-wing hinge decompressive craniotomy for infantile acute subdural hematoma: A case report

    No full text
    Infantile severe acute subdural hematomas (ASDHs) usually require a decompressive craniotomy. However, these infantile patients often suffer surgical site infection and aseptic bone-flap resorption after external decompression. In this report, we showed a case of a simplified hinge decompressive craniotomy in an infant with severe ASDH. A 2-month-old girl suffered from status epilepticus, impaired consciousness, multiple rib fractures, bilateral fundus hemorrhage, and a right ASDH. We performed a simplified hinge decompressive craniotomy, making a vascularized bone flap with a hinge using the partial temporal bone and temporal muscle and not fixing the bone flap like an inverted gull wing. Cranioplasty was performed 4 weeks after the decompression craniotomy with replaced resorbable substitute dura. Six months after the transfer, her development was generally in line with her age. The decompressive craniotomy with an inverted gull-wing hinge has shown a good outcome

    Long-Term Potentiation Enhances Neuronal Differentiation in the Chronic Hypoperfusion Model of Rats

    No full text
    Several reports have shown that long-term potentiation (LTP) per se effectively enhances neurogenesis in the hippocampus of intact animals. If LTP can enhance neurogenesis in chronic hypoperfusion, this approach could potentially become a new therapeutic strategy for the restoration of cognitive function and for prevention from deterioration of mild cognitive impairment (MCI). Using an in vivo LTP model of rats, we examined whether LTP per se can enhance neurogenesis in hypoperfusion rats that underwent permanent bilateral common carotid artery occlusion (permanent 2-vessel occlusion, P2VO). High frequency stimulation (HFS) in the subacute phase after P2VO enhanced hippocampal cell proliferation and neurogenesis. However, most enhanced cell proliferation and neurogenesis was seen in the hypoperfusion rats that received HFS and for which LTP could finally be induced. In contrast, the same effect was not seen in the LTP induction in the chronic phase. The present findings, which reveal that most enhanced neurogenesis was seen in hypoperfusion rats for which LTP could be finally induced, could explain the ability of LTP-like activities such as learning paradigms and environmental stimuli to increase the rate of neurogenesis in the hippocampus even under hypoperfusion conditions. Moreover, the present findings, which reveal that LTP induction in the chronic phase after P2VO could not effectively enhance neurogenesis in the hypoperfusion rats, could indicate that patients with MCI and even middle-aged healthy control individuals should start LTP-like activities as early as possible and continue with these activities to prevent age-related deterioration of hippocampal function

    Electrical Stimulation Enhances Migratory Ability of Transplanted Bone Marrow Stromal Cells in a Rodent Ischemic Stroke Model

    No full text
    Background/Aims: Bone marrow stromal cells (BMSCs) transplantation is an important strategy for the treatment of ischemic stroke. Currently, there are no effective methods to guide BMSCs toward the targeted site. In this study, we investigated the effect of electrical stimulation on BMSCs migration in an ischemic model of rats. Methods: Adult male Wistar rats weighing 200 to 250 g received right middle cerebral artery occlusion (MCAO) for 90 minutes. BMSCs (2.5×105 cells/ 4 µl PBS) were stereotaxically injected into the left corpus callosum at 1 day after MCAO. After BMSCs injection, a plate electrode with a diameter of 3 mm connected to an implantable electrical stimulator was placed on the right frontal epidural space and a counter electrode was placed in the extra-cranial space. Electrical stimulation at preset current (100 µA) and frequency (100 Hz) was performed for two weeks. Behavioral tests were performed at 1, 4, 8, and 15 days after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at 15 days after MCAO for evaluation of infarction area and the migration distance and area of BMSCs found in the brain tissue. After evaluating cell migration, we proceeded to explore the mechanisms guiding these observations. MCAO rats without BMSCs transplantation were stimulated with same current and frequency. At 1 and 2 weeks after MCAO, rats were euthanized to evaluate stromal cell-derived factor 1 alpha (SDF-1α) level of brain tissues in the bilateral cortex and striatum. Results: Behavioral tests at 4, 8, and 15 days after MCAO revealed that stimulation group displayed significant amelioration in mNSS and cylinder test compared to control group (p<0.05). Similarly, the infarction areas of stroke rats in stimulation group were significantly decreased compared to control group (p<0.05). Migration distance and area of transplanted BMSCs were significantly longer and wider respectively in stimulation group. An increased concentration gradient of SDF-1α in stimulation group accompanied this enhanced migration of transplanted cells. Conclusions: These results suggest that electrical stimulation enhances migratory ability of transplanted BMSCs in ischemic stroke model of rats. If we can direct the implanted BMSCs to the site of interest, it may lead to a greater therapeutic effect

    Electrical Stimulation Enhances Migratory Ability of Transplanted Bone Marrow Stromal Cells in a Rodent Ischemic Stroke Model

    Get PDF
    Background/Aims: Bone marrow stromal cells (BMSCs) transplantation is an important strategy for the treatment of ischemic stroke. Currently, there are no effective methods to guide BMSCs toward the targeted site. In this study, we investigated the effect of electrical stimulation on BMSCs migration in an ischemic model of rats. Methods: Adult male Wistar rats weighing 200 to 250 g received right middle cerebral artery occlusion (MCAO) for 90 minutes. BMSCs (2.5×105 cells/ 4 µl PBS) were stereotaxically injected into the left corpus callosum at 1 day after MCAO. After BMSCs injection, a plate electrode with a diameter of 3 mm connected to an implantable electrical stimulator was placed on the right frontal epidural space and a counter electrode was placed in the extra-cranial space. Electrical stimulation at preset current (100 µA) and frequency (100 Hz) was performed for two weeks. Behavioral tests were performed at 1, 4, 8, and 15 days after MCAO using the modified Neurological Severity Score (mNSS) and cylinder test. Rats were euthanized at 15 days after MCAO for evaluation of infarction area and the migration distance and area of BMSCs found in the brain tissue. After evaluating cell migration, we proceeded to explore the mechanisms guiding these observations. MCAO rats without BMSCs transplantation were stimulated with same current and frequency. At 1 and 2 weeks after MCAO, rats were euthanized to evaluate stromal cell-derived factor 1 alpha (SDF-1α) level of brain tissues in the bilateral cortex and striatum. Results: Behavioral tests at 4, 8, and 15 days after MCAO revealed that stimulation group displayed significant amelioration in mNSS and cylinder test compared to control group (p<0.05). Similarly, the infarction areas of stroke rats in stimulation group were significantly decreased compared to control group (p<0.05). Migration distance and area of transplanted BMSCs were significantly longer and wider respectively in stimulation group. An increased concentration gradient of SDF-1α in stimulation group accompanied this enhanced migration of transplanted cells. Conclusions: These results suggest that electrical stimulation enhances migratory ability of transplanted BMSCs in ischemic stroke model of rats. If we can direct the implanted BMSCs to the site of interest, it may lead to a greater therapeutic effect
    corecore