3,451 research outputs found
Multireference Correlation in Long Molecules with the Quadratic Scaling Density Matrix Renormalization Group
We have devised and implemented a local ab initio Density Matrix
Renormalization Group (DMRG) algorithm to describe multireference nondynamic
correlations in large systems. For long molecules that are extended in one of
their spatial dimensions, this method allows us to obtain an exact
characterisation of correlation, in the given basis, with a cost that scales
only quadratically with the size of the system. The reduced scaling is achieved
solely through integral screening and without the construction of correlation
domains. We demonstrate the scaling, convergence, and robustness of the
algorithm in polyenes and hydrogen chains. We converge to exact correlation
energies (with 1-10 microhartree precision) in all cases and correlate up to
100 electrons in 100 active orbitals. We further use our algorithm to obtain
exact energies for the metal-insulator transition in hydrogen chains and
compare and contrast our results with those from conventional quantum chemical
methods.Comment: 14 pages, 12 figures, tciLaTeX, aip-BibTeX styl
Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory
We show that the scattering interaction between a high energy electron and a
photon can be strongly enhanced by different types of localized plasmons in a
non-trivial way. The scattering interaction is predicted by an eigen-response
theory, numerically verified by finite-difference-time-domain simulation, and
experimentally verified by cathodoluminescence spectroscopy. We find that the
scattering interaction associated with dark plasmons can be as strong as that
of bright plasmons. Such a strong interaction may offer new opportunities to
improve single-plasmon detection and high-resolution characterization
techniques for high quality plasmonic materials.Comment: 4 pages, 4 figures (excluding Supporting Information
Orbital Optimization in the Density Matrix Renormalization Group, with applications to polyenes and \beta-carotene
In previous work we have shown that the Density Matrix Renormalization Group
(DMRG) enables near-exact calculations in active spaces much larger than are
possible with traditional Complete Active Space algorithms. Here, we implement
orbital optimisation with the Density Matrix Renormalization Group to further
allow the self-consistent improvement of the active orbitals, as is done in the
Complete Active Space Self-Consistent Field (CASSCF) method. We use our
resulting DMRGCASSCF method to study the low-lying excited states of the
all-trans polyenes up to C24H26 as well as \beta-carotene, correlating with
near-exact accuracy the optimised complete \pi-valence space with up to 24
active electrons and orbitals, and analyse our results in the light of the
recent discovery from Resonance Raman experiments of new optically dark states
in the spectrum.Comment: 16 pages, 8 figure
Affleck-Dine Baryogenesis, Split Supersymmetry, and Inflation
It is shown that, in the context of split supersymmetry, a simple model with
a single complex scalar field can produce chaotic inflation and generate the
observed amount of baryon asymmetry via the Affleck-Dine mechanism. While the
inflaton quantum fluctuations give rise to curvature perturbation, we show that
quantum fluctuations of the phase of the scalar field can produce baryonic
isocurvature perturbation. Combining with constraints from WMAP data, all
parameters in the model can be determined to within a narrow range.Comment: version accepted for publication in PR
Different charging strategies for electric vehicle fleets in urban freight transport.
The transition from diesel-driven urban freight transport towards more electric urban freight transport turns out to be challenging in practice. A major concern for transport operators is how to find a reliable charging strategy for a larger electric vehicle fleet that provides flexibility based on different daily mission profiles within that fleet, while also minimizing costs. This contribution assesses the trade-off between a large battery pack and opportunity charging with regard to costs and operational constraints. Based on a case study with 39 electric freight vehicles that have been used by a parcel delivery company and a courier company in daily operations for over a year, various scenarios have been analyzed by means of a TCO analysis. Although a large battery allows for more flexibility in planning, opportunity charging can provide a feasible alternative, especially in the case of varying mission profiles. Additional personnel costs during opportunity charging can be avoided as much as possible by a well-integrated charging strategy, which can be realized by a reservation system that minimizes the risk of occupied charging stations and a dense network of charging stations
Trapping effects on inflation
We develop a Lagrangian approach based on the influence functional method so
as to derive self-consistently the Langevin equation for the inflaton field in
the presence of trapping points along the inflaton trajectory. The Langevin
equation exhibits the backreaction and the fluctuation-dissipation relation of
the trapping. The fluctuation is induced by a multiplicative colored noise that
can be identified as the the particle number density fluctuations and the
dissipation is a new effect that may play a role in the trapping with a strong
coupling. In the weak coupling regime, we calculate the power spectrum of the
noise-driven inflaton fluctuations for a single trapping point and studied its
variation with the trapping location. We also consider a case with closely
spaced trapping points and find that the resulting power spectrum is blue.Comment: 13 pages, 2 figure
Interaction driven metal-insulator transition in strained graphene
The question of whether electron-electron interactions can drive a metal to
insulator transition in graphene under realistic experimental conditions is
addressed. Using three representative methods to calculate the effective
long-range Coulomb interaction between -electrons in graphene and solving
for the ground state using quantum Monte Carlo methods, we argue that without
strain, graphene remains metallic and changing the substrate from SiO to
suspended samples hardly makes any difference. In contrast, applying a rather
large -- but experimentally realistic -- uniform and isotropic strain of about
seems to be a promising route to making graphene an antiferromagnetic
Mott insulator.Comment: Updated version: 6 pages, 3 figure
The role of electron-electron interactions in two-dimensional Dirac fermions
The role of electron-electron interactions on two-dimensional Dirac fermions
remains enigmatic. Using a combination of nonperturbative numerical and
analytical techniques that incorporate both the contact and long-range parts of
the Coulomb interaction, we identify the two previously discussed regimes: a
Gross-Neveu transition to a strongly correlated Mott insulator, and a
semi-metallic state with a logarithmically diverging Fermi velocity accurately
described by the random phase approximation. Most interestingly, experimental
realizations of Dirac fermions span the crossover between these two regimes
providing the physical mechanism that masks this velocity divergence. We
explain several long-standing mysteries including why the observed Fermi
velocity in graphene is consistently about 20 percent larger than the best
values calculated using ab initio and why graphene on different substrates show
different behavior.Comment: 11 pages, 4 figure
- …