19,412 research outputs found

    Comet dust as a mixture of aggregates and solid particles: model consistent with ground-based and space-mission results

    Get PDF
    The most successful model of comet dust presents comet particles as aggregates of submicron grains. It qualitatively explains the spectral and angular change in the comet brightness and polarization and is consistent with the thermal infrared data and composition of the comet dust obtained {\it in situ} for comet 1P/Halley. However, it experiences some difficulties in providing a quantitative fit to the observational data. Here we present a model that considers comet dust as a mixture of aggregates and compact particles. The model is based on the Giotto and Stardust mission findings that both aggregates (made mainly of organics, silicates, and carbon) and solid silicate particles are present in the comet dust. We simulate aggregates as {\bf Ballistic Cluster-Cluster Aggregates (BCCA)} and compact particles as polydisperse spheroids with some distribution of the aspect ratio. The particles follow a power-law size distribution with the power -3 that is close to the one obtained for comet dust {\it in situ}, at studies of the Stardust returned samples, and the results of ground-based observations of comets. The model provides a good fit to the angular polarization curve. It also reproduces the positive spectral gradient of polarization, red color of the dust, and {\bf low albedo. It also has the ratio of compact to fluffy particles close to the one found {\it in situ} for comet 1P/Halley} and the mass ratio of silicate to carbonaceous materials equal to unity that is in accordance with the elemental abundances of Halley's dust found by Giotto mission.Comment: "Earth and Planetary Science" (Japan), in pres

    Equilibrium magnetization in the vicinity of the first order phase transition in the mixed state of high-Tc superconductors

    Full text link
    We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.Comment: 4 pages, 5 figure

    Magnetic structure of Ba(TiO)Cu4_4(PO4_4)4_4 probed using spherical neutron polarimetry

    Full text link
    The antiferromagnetic compound Ba(TiO)Cu4_4(PO4_4)4_4 contains square cupola of corner-sharing CuO4_4 plaquettes, which were proposed to form effective quadrupolar order. To identify the magnetic structure, we have performed spherical neutron polarimetry measurements. Based on symmetry analysis and careful measurements we conclude that the orientation of the Cu2+^{2+} spins form a non-collinear in-out structure with spins approximately perpendicular to the CuO4_4 motif. Strong Dzyaloshinskii-Moriya interaction naturally lends itself to explain this phenomenon. The identification of the ground state magnetic structure should serve well for future theoretical and experimental studies into this and closely related compounds.Comment: 9 pages, 4 figure

    Chaos driven fusion enhancement factor at astrophysical energies

    Full text link
    We perform molecular dynamics simulations to assess the screening effects by bound target electrons in low energy nuclear reactions in laboratories. Quantum effects corresponding to the Pauli and Heisenberg principle are enforced by constraints. We show that the enhancement of the average cross section and of its variance is due to the perturbations induced by the electrons.This gives a correlation between the maximum amplitudes of the inter-nuclear oscillational motion and the enhancement factor. It suggests that the chaotic behavior of the electronic motion affects the magnitude of the enhancement factor.Comment: 4 pages, 3 figure

    A computerized Langmuir probe system

    Get PDF
    For low pressure plasmas it is important to record entire single or double Langmuir probe characteristics accurately. For plasmas with a depleted high energy tail, the accuracy of the recorded ion current plays a critical role in determining the electron temperature. Even for high density Maxwellian distributions, it is necessary to accurately model the ion current to obtain the correct electron density. Since the electron and ion current saturation values are, at best, orders of magnitude apart, a single current sensing resistor cannot provide the required resolution to accurately record these values. We present an automated, personal computer based data acquisition system for the determination of fundamental plasma properties in low pressure plasmas. The system is designed for single and double Langmuir probes, whose characteristics can be recorded over a bias voltage range of ±70 V with 12 bit resolution. The current flowing through the probes can be recorded within the range of 5 nA–100 mA. The use of a transimpedance amplifier for current sensing eliminates the requirement for traditional current sensing resistors and hence the need to correct the raw data. The large current recording range is realized through the use of a real time gain switching system in the negative feedback loop of the transimpedance amplifier

    Electronic inhomogeneity in EuO: Possibility of magnetic polaron states

    Full text link
    We have observed the spatial inhomogeneity of the electronic structure of a single-crystalline electron-doped EuO thin film with ferromagnetic ordering by employing infrared magneto-optical imaging with synchrotron radiation. The uniform paramagnetic electronic structure changes to a uniform ferromagnetic structure via an inhomogeneous state with decreasing temperature and increasing magnetic field slightly above the ordering temperature. One possibility of the origin of the inhomogeneity is the appearance of magnetic polaron states.Comment: 4 pages, 3 figure

    On the Decelerating Shock Instability of Plane-Parallel Slab with Finite Thickness

    Get PDF
    Dynamical stability of the shock compressed layer with finite thickness is investigated. It is characterized by self-gravity, structure, and shock condition at the surfaces of the compressed layer. At one side of the shocked layer, its surface condition is determined via the ram pressure, while at the other side the thermal pressure supports its structure. When the ram pressure dominates the thermal pressure, we expect deceleration of the shocked layer. Especially, in this paper, we examine how the stratification of the decelerating layer has an effect on its dynamical stability. Performing the linear perturbation analysis, a {\it more general} dispersion relation than the previous one obtained by one of the authors is derived. It gives us an interesting information about the stability of the decelerating layer. Importantly, the DSI (Decelerating Shock Instability) and the gravitational instability are always incompatible. We also consider the evolution effect of the shocked layer. In the early stages of its evolution, only DSI occurs. On the contrary, in the late stages, it is possible for the shocked layer to be unstable for the DSI (in smaller scale) and the gravitational instability (in larger scale). Furthermore, we find there is a stable range of wavenumbers against both the DSI and the gravitational instability between respective unstable wavenumber ranges. These stable modes suggest the ineffectiveness of DSI for the fragmentation of the decelerating slab.Comment: 17 pages, 6 figures. The Astrophysical Journal Vol.532 in pres

    Incommensurate lattice distortion in the high temperature tetragonal phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4}

    Full text link
    We report incommensurate diffuse (ICD) scattering appearing in the high-temperature-tetragonal (HTT) phase of La2x_{2-x}(Sr,Ba)x_{x}CuO4_{4} with 0.07x0.200.07 \leq x \leq 0.20 observed by the neutron diffraction technique. For all compositions, a sharp superlattice peak of the low-temperature-orthorhombic (LTO) structure is replaced by a pair of ICD peaks with the modulation vector parallel to the CuO6_6 octahedral tilting direction, that is, the diagonal Cu-Cu direction of the CuO2_2 plane, above the LTO-HTT transition temperature TsT_s. The temperature dependences of the incommensurability δ\delta for all samples scale approximately as T/TsT/T_s, while those of the integrated intensity of the ICD peaks scale as (TTs)1(T-T_s)^{-1}. These observations together with absence of ICD peaks in the non-superconducting x=0.05x=0.05 sample evince a universal incommensurate lattice instability of hole-doped 214 cuprates in the superconducting regime.Comment: 6 pages, 6 figure

    High-energy magnetic excitations in overdoped La2x_{2-x}Srx_{x}CuO4_{4} studied by neutron and resonant inelastic X-ray scattering

    Full text link
    We have performed neutron inelastic scattering and resonant inelastic X-ray scattering (RIXS) at the Cu-L3L_3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2x_{2-x}Srx_{x}CuO4_{4} with x=0.25x=0.25 (Tc=15T_c=15 K) and x=0.30x=0.30 (non-superconducting) using identical single crystal samples for the two techniques. From constant-energy slices of neutron scattering cross-sections, we have identified magnetic excitations up to ~250 meV for x=0.25x=0.25. Although the width in the momentum direction is large, the peak positions along the (pi, pi) direction agree with the dispersion relation of the spin-wave in the non-doped La2_{2}CuO4_{4} (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L3L_3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (pi, pi) and (pi, 0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (pi, 0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (pi, pi) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin-wave of LCO near (pi/2, pi/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (pi, pi) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (pi, pi) direction as detected by the X-ray scattering.Comment: 7 pages, 7 figure

    Conductance renormalization and conductivity of a multi-subband Tomonaga-Luttinger model

    Full text link
    We studied the conductance renormalization and conductivity of multi-subband Tomonaga-Luttinger models with inter-subband interactions. We found that, as in single-band systems, the conductance of a multi-subband system with an arbitrary number of subbands is not renormalized due to interaction between electrons. We derived a formula for the conductivity in multi-subband models. We applied it to a simplified case and found that inter-subband interaction enhances the conductivity, which is contrary to the intra-subband repulsive interaction, and that the conductivity is further enhanced for a larger number of subbands.Comment: 12 pages, no figures. to be published in Physical Review B as a brief repor
    corecore