25,024 research outputs found
Phase separation in the vicinity of the surface of -(BEDT-TTF)Cu[N(CN)]Br by fast cooling
Partial suppression of superconductivity by fast cooling has been observed in
the organic superconductor -(BEDT-TTF)Cu[N(CN)]Br by two means:
a marked sample size effect on the magnetic susceptibility and direct imaging
of insulating regions by scanning microregion infrared reflectance
spectroscopy. Macroscopic insulating regions are found in the vicinity of the
crystalline surface after fast cooling, with diameters of 50--100 m and
depths of a few m. The very large in-plane penetration depth reported to
date ( 24--100 m) can be explained by the existence of the
insulating regions.Comment: Several rhetoric alternations to avoid misleadings. 6 pages, 3
figures. to be publihsed in Phys. Rev.
Phonon engineering with superlattices: generalized nanomechanical potentials
Earlier implementations to simulate coherent wave propagation in
one-dimensional potentials using acoustic phonons with gigahertz-terahertz
frequencies were based on coupled nanoacoustic resonators. Here, we generalize
the concept of adiabatic tuning of periodic superlattices for the
implementation of effective one-dimensional potentials giving access to cases
that cannot be realized by previously reported phonon engineering approaches,
in particular the acoustic simulation of electrons and holes in a quantum well
or a double well potential. In addition, the resulting structures are much more
compact and hence experimentally feasible. We demonstrate that potential
landscapes can be tailored with great versatility in these multilayered
devices, apply this general method to the cases of parabolic, Morse and
double-well potentials and study the resulting stationary phonon modes. The
phonon cavities and potentials presented in this work could be probed by
all-optical techniques like pump-probe coherent phonon generation and Brillouin
scattering
SpecPro: An Interactive IDL Program for Viewing and Analyzing Astronomical Spectra
We present an interactive IDL program for viewing and analyzing astronomical
spectra in the context of modern imaging surveys. SpecPro's interactive design
lets the user simultaneously view spectroscopic, photometric, and imaging data,
allowing for rapid object classification and redshift determination. The
spectroscopic redshift can be determined with automated cross-correlation
against a variety of spectral templates or by overlaying common emission and
absorption features on the 1-D and 2-D spectra. Stamp images as well as the
spectral energy distribution (SED) of a source can be displayed with the
interface, with the positions of prominent photometric features indicated on
the SED plot. Results can be saved to file from within the interface. In this
paper we discuss key program features and provide an overview of the required
data formats.Comment: Accepted for publication in the Publications of the Astronomical
Society of the Pacific (PASP) journal. Website: specpro.caltech.ed
Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb
Infrared reflectivity measurements of CeSb under multi-extreme conditions
(low temperatures, high pressures and high magnetic fields) were performed. A
pseudo gap structure, which originates from the magnetic band folding effect,
responsible for the large enhancement in the electrical resistivity in the
single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure
of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo
gap changes to that of a metallic structure with increasing magnetic field
strength and increasing temperature. This change is the result of the magnetic
phase transition from the AF-1 phase to other phases as a function of the
magnetic field strength and temperature. This result is the first optical
observation of the formation and collapse of a pseudo gap under multi-extreme
conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
Stochastic delocalization of finite populations
Heterogeneities in environmental conditions often induce corresponding
heterogeneities in the distribution of species. In the extreme case of a
localized patch of increased growth rates, reproducing populations can become
strongly concentrated at the patch despite the entropic tendency for population
to distribute evenly. Several deterministic mathematical models have been used
to characterize the conditions under which localized states can form, and how
they break down due to convective driving forces. Here, we study the
delocalization of a finite population in the presence of number fluctuations.
We find that any finite population delocalizes on sufficiently long time
scales. Depending on parameters, however, populations may remain localized for
a very long time. The typical waiting time to delocalization increases
exponentially with both population size and distance to the critical wind speed
of the deterministic approximation. We augment these simulation results by a
mathematical analysis that treats the reproduction and migration of individuals
as branching random walks subject to global constraints. For a particular
constraint, different from a fixed population size constraint, this model
yields a solvable first moment equation. We find that this solvable model
approximates very well the fixed population size model for large populations,
but starts to deviate as population sizes are small. The analytical approach
allows us to map out a phase diagram of the order parameter as a function of
the two driving parameters, inverse population size and wind speed. Our results
may be used to extend the analysis of delocalization transitions to different
settings, such as the viral quasi-species scenario
Cluster structures in Oxygen isotopes
Cluster structure of 16O,18O and 20O is investigated by the antisymmettrized
molecular dynamics (AMD) plus generator coordinate method (GCM). We have found
the K^{\pi}=0 and 0 rotational bands of 18O that have the prominent
14C+\alpha cluster structure. Clustering systematics becomes richer in 20O. We
suggest the K^{\pi}=0 band that is the mixture of the 12C+\alpha+4n and
14C+6He cluster structures, and the K^{\pi}=0 band that has the 14C+6He
cluster structure. The K^{\pi}=0 and 0 bands that have the
prominent 16C+\alpha cluster structure are also found.Comment: 9pages, 9figure
Superdeformation and clustering in Ca studied with Antisymmetrized Molecular Dynamics
Deformed states in Ca are investigated with a method of
antisymmetrized molecular dynamics. Above the spherical ground state,
rotational bands arise from a normal deformation and a superdeformation as well
as an oblate deformation. The calculated energy spectra and transition
strengths in the superdeformed band reasonably agree to the experimental data
of the superdeformed band starting from the state at 5.213 MeV. By the
analysis of single-particle orbits, it is found that the superdeformed state
has particle-hole nature of an - configuration. One of new findings is
parity asymmetric structure with C+Si-like clustering in the
superdeformed band. We predict that C+Si molecular bands may be
built above the superdeformed band due to the excitation of inter-cluster
motion. They are considered to be higher nodal states of the superdeformed
state. We also suggest negative-parity bands caused by the parity asymmetric
deformation.Comment: 13 figures, submitted to Phys. Rev.
- …