1,367 research outputs found

    Efficient Quantum Computation with Probabilistic Quantum Gates

    Get PDF
    With a combination of the quantum repeater and the cluster state approaches, we show that efficient quantum computation can be constructed even if all the entangling quantum gates only succeed with an arbitrarily small probability p. The required computational overhead scales efficiently both with 1/p and n, where n is the number of qubits in the computation. This approach provides an efficient way to combat noise in a class of quantum computation implementation schemes, where the dominant noise leads to probabilistic signaled errors with an error probability 1-p far beyond any threshold requirement

    Robust quantum gates on neutral atoms with cavity-assisted photon-scattering

    Get PDF
    We propose a scheme to achieve quantum computation with neutral atoms whose interactions are catalyzed by single photons. Conditional quantum gates, including an NN-atom Toffoli gate and nonlocal gates on remote atoms, are obtained through cavity-assisted photon scattering in a manner that is robust to random variation in the atom-photon coupling rate and which does not require localization in the Lamb-Dicke regime. The dominant noise in our scheme is automatically detected for each gate operation, leading to signalled errors which do not preclude efficient quantum computation even if the error probability is close to the unity.Comment: 4 pages, 3 figure

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    Efficient engineering of multi-atom entanglement through single-photon detections

    Get PDF
    We propose an efficient scheme to engineer multi-atom entanglement by detecting cavity decay through single-photon detectors. In the special case of two atoms, this scheme is much more efficient than previous probabilistic schemes, and insensitive to randomness in the atom's position. More generally, the scheme can be used to prepare arbitrary superpositions of multi-atom Dicke states without the requirements of high-efficiency detection and separate addressing of different atoms.Comment: 5 pages, 2 figure

    Multiatom and transit-time effects on photon-correlation measurements in resonance fluorescence

    Get PDF
    An expression is derived for the expected number of photon pairs separated by a time interval τ that are detected in photoelectric correlation measurements of an atomic beam, when due account is taken of the fluctuations of the number of radiating atoms and of the effect of their finite transit time through the field of view. The theoretical expression is checked against some recent measurements and good agreement is obtained

    Mach-Zehnder Interferometry at the Heisenberg Limit with coherent and squeezed-vacuum light

    Full text link
    We show that the phase sensitivity Δθ\Delta \theta of a Mach-Zehnder interferometer fed by a coherent state in one input port and squeezed-vacuum in the other one is i) independent from the true value of the phase shift and ii) can reach the Heisenberg limit Δθ1/NT\Delta \theta \sim 1/N_T, where NTN_T is the average number of particles of the input states. We also show that the Cramer-Rao lower bound, Δθ1/α2e2r+sinh2r\Delta \theta \propto 1/ \sqrt{|\alpha|^2 e^{2r} + \sinh^2r}, can be saturated for arbitrary values of the squeezing parameter rr and the amplitude of the coherent mode α|\alpha| by a Bayesian phase inference protocol.Comment: 4 pages, 4 figure

    Clocked Atom Delivery to a Photonic Crystal Waveguide

    Get PDF
    Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided mode (GM) fields that provide spatially varying AC-Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into to the central vacuum gap of the PCW at predetermined times and with known AC-Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments

    Generating entangled photon pairs from a cavity-QED system

    Full text link
    We propose a scheme for the controlled generation of Einstein-Podosky-Rosen (EPR) entangled photon pairs from an atom coupled to a high Q optical cavity, extending the prototype system as a source for deterministic single photons. A thorough theoretical analysis confirms the promising operating conditions of our scheme as afforded by currently available experimental setups. Our result demonstrates the cavity QED system as an efficient and effective source for entangled photon pairs, and shines new light on its important role in quantum information science.Comment: It has recently come to our attention that the experiment by T. Wilk, S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007), exactly realizes what we proposed in this article, which is published in Phy. Rev. A 040302(R) (2005

    Control of decoherence in the generation of photon pairs from atomic ensembles

    Full text link
    We report an investigation to establish the physical mechanisms responsible for decoherence in the generation of photon pairs from atomic ensembles, via the protocol of Duan et. al for long distance quantum communication [Nature (London) 414, 413 (2001)] and present the experimental techniques necessary to properly control the process. We develop a theory to model in detail the decoherence process in experiments with magneto-optical traps. The inhomogeneous broadening of the ground state by the trap magnetic field is identified as the principal mechanism for decoherence. In conjunction with our theoretical analysis, we report a series of measurements to characterize and control the coherence time in our experimental setup. We use copropagating stimulated Raman spectroscopy to access directly the ground state energy distribution of the ensemble. These spectroscopic measurements allow us to switch off the trap magnetic field in a controlled way, optimizing the repetition rate for single-photon measurements. With the magnetic field off, we then measure nonclassical correlations for pairs of photons generated by the ensemble as a function of the storage time of the single collective atomic excitation. We report coherence times longer than 10 microseconds, corresponding to an increase of two orders of magnitude compared to previous results in cold ensembles. The coherence time is now two orders of magnitude longer than the duration of the excitation pulses. The comparison between these experimental results and the theory shows good agreement. Finally, we employ our theory to devise ways to improve the experiment by optical pumping to specific initial states.Comment: 16 pages, 11 figures, submitted for publicatio

    Direct measurement of decoherence for entanglement between a photon and stored atomic excitation

    Get PDF
    Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for storage times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.Comment: 4 pages, 3 figures. Minor changes. Published versio
    corecore