1,562 research outputs found
Nonlinear spectroscopy in the strong-coupling regime of cavity QED
A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is varied from N̅≈4.2 to N̅≈0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for N̅≳2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and the experiments is observed for small numbers of atoms (N̅≲1). Unfortunately, it is difficult to determine if this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the severe technical complications of the experiment
Determination of the number of atoms trapped in an optical cavity
The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from Ngreater than or equal to 3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s
Observation of the Vacuum-Rabi Spectrum for One Trapped Atom
The transmission spectrum for one atom strongly coupled to the field of a
high-finesse optical resonator is observed to exhibit a clearly resolved
vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue
spectrum of the atom-cavity system. A new Raman scheme for cooling atomic
motion along the cavity axis enables a complete spectrum to be recorded for an
individual atom trapped within the cavity mode, in contrast to all previous
measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
Cavity QED "By The Numbers"
The number of atoms trapped within the mode of an optical cavity is
determined in real time by monitoring the transmission of a weak probe beam.
Continuous observation of atom number is accomplished in the strong coupling
regime of cavity quantum electrodynamics and functions in concert with a
cooling scheme for radial atomic motion. The probe transmission exhibits sudden
steps from one plateau to the next in response to the time evolution of the
intracavity atom number, from N >= 3 to N = 2 to 1 to 0, with some trapping
events lasting over 1 second.Comment: 5 pages, 4 figure
Trapped atoms in cavity QED: coupling quantized light and matter
On the occasion of the hundredth anniversary of Albert Einstein's annus mirabilis, we reflect on the development and current state of research in cavity quantum electrodynamics in the optical domain. Cavity QED is a field which undeniably traces its origins to Einstein's seminal work on the statistical theory of light and the nature of its quantized interaction with matter. In this paper, we emphasize the development of techniques for the confinement of atoms strongly coupled to high-finesse resonators and the experiments which these techniques enable
Squeezed-state generation in optical bistability
Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting
State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity
Single Cesium atoms are cooled and trapped inside a small optical cavity by
way of a novel far-off-resonance dipole-force trap (FORT), with observed
lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via
transmission of a strongly coupled probe beam, with individual events lasting ~
1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby
monitored in real time. Trapping, cooling, and interactions with strong
coupling are enabled by the FORT potential, for which the center-of-mass motion
is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let
Cavity QED with Single Atoms and Photons
Recent experimental advances in the field of cavity quantum electrodynamics (QED) have opened new possibilities for control of atom-photon interactions. A laser with "one and the same atom" demonstrates the theory of laser operation pressed to its conceptual limit. The generation of single photons on demand and the realization of cavity QED with well defined atomic numbers N = 0, 1, 2,... both represent important steps toward realizing diverse protocols in quantum information science. Coherent manipulation of the atomic state via Raman transitions provides a new tool in cavity QED for in situ monitoring and control of the atom-cavity system. All of these achievements share a common point of departure: the regime of strong coupling. It is thus interesting to consider briefly the history of the strong coupling criterion in cavity QED and to trace out the path that research has taken in the pursuit of this goal
Far-UV Emission from Elliptical Galaxies at z=0.55
The restframe UV-to-optical flux ratio, characterizing the ``UV upturn''
phenomenon, is potentially the most sensitive tracer of age in elliptical
galaxies; models predict that it may change by orders of magnitude over the
course of a few Gyr. In order to trace the evolution of the UV upturn as a
function of redshift, we have used the far-UV camera on the Space Telescope
Imaging Spectrograph to image the galaxy cluster CL0016+16 at z=0.55. Our
25''x25'' field includes four bright elliptical galaxies, spectroscopically
confirmed to be passively evolving cluster members. The weak UV emission from
the galaxies in our image demonstrates that the UV upturn is weaker at a
lookback time 5.6 Gyr earlier than our own, as compared to measurements of the
UV upturn in cluster E and S0 galaxies at z=0 and z=0.375. These images are the
first with sufficient depth to demonstrate the fading of the UV upturn expected
at moderate redshifts. We discuss these observations and the implications for
the formation history of galaxies.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty
and apjfonts.sty (included). Accepted for publication in ApJ Letter
Optical pumping via incoherent Raman transitions
A new optical pumping scheme is presented that uses incoherent Raman
transitions to prepare a trapped Cesium atom in a specific Zeeman state within
the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme
over existing optical pumping schemes is that the atom can be prepared in any
of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity
quantum electrodynamics, but the technique is equally applicable to a wide
variety of atomic systems with hyperfine ground-state structure.Comment: 8 pages, 4 figure
- …