1,562 research outputs found

    Nonlinear spectroscopy in the strong-coupling regime of cavity QED

    Get PDF
    A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is varied from N̅≈4.2 to N̅≈0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for N̅≳2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and the experiments is observed for small numbers of atoms (N̅≲1). Unfortunately, it is difficult to determine if this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the severe technical complications of the experiment

    Determination of the number of atoms trapped in an optical cavity

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from Ngreater than or equal to 3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s

    Observation of the Vacuum-Rabi Spectrum for One Trapped Atom

    Get PDF
    The transmission spectrum for one atom strongly coupled to the field of a high-finesse optical resonator is observed to exhibit a clearly resolved vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure

    Cavity QED "By The Numbers"

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from N >= 3 to N = 2 to 1 to 0, with some trapping events lasting over 1 second.Comment: 5 pages, 4 figure

    Trapped atoms in cavity QED: coupling quantized light and matter

    Get PDF
    On the occasion of the hundredth anniversary of Albert Einstein's annus mirabilis, we reflect on the development and current state of research in cavity quantum electrodynamics in the optical domain. Cavity QED is a field which undeniably traces its origins to Einstein's seminal work on the statistical theory of light and the nature of its quantized interaction with matter. In this paper, we emphasize the development of techniques for the confinement of atoms strongly coupled to high-finesse resonators and the experiments which these techniques enable

    Squeezed-state generation in optical bistability

    Get PDF
    Experiments to generate squeezed states of light are described for a collection of two-level atoms within a high-finesse cavity. The investigation is conducted in a regime for which the weak-field coupling of atoms to the cavity mode produces a splitting in the normal mode structure of the atom-field system that is large compared with the atomic linewidth. Reductions in photocurrent noise of 30% (-1.55 dB) below the noise level set by the vacuum state of the field are observed in a balanced homodyne detector. A degree of squeezing of approximately 50% is inferred for the field state in the absence of propagation and detection losses. The observed spectrum of squeezing extends over a very broad range of frequencies (~±75 MHz), with the frequency of best squeezing corresponding to an offset from the optical carrier given by the normal mode splitting

    State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity

    Get PDF
    Single Cesium atoms are cooled and trapped inside a small optical cavity by way of a novel far-off-resonance dipole-force trap (FORT), with observed lifetimes of 2 to 3 seconds. Trapped atoms are observed continuously via transmission of a strongly coupled probe beam, with individual events lasting ~ 1 s. The loss of successive atoms from the trap N = 3 -> 2 -> 1 -> 0 is thereby monitored in real time. Trapping, cooling, and interactions with strong coupling are enabled by the FORT potential, for which the center-of-mass motion is only weakly dependent on the atom's internal state.Comment: 5 pages, 4 figures Revised version to appear in Phys. Rev. Let

    Cavity QED with Single Atoms and Photons

    Get PDF
    Recent experimental advances in the field of cavity quantum electrodynamics (QED) have opened new possibilities for control of atom-photon interactions. A laser with "one and the same atom" demonstrates the theory of laser operation pressed to its conceptual limit. The generation of single photons on demand and the realization of cavity QED with well defined atomic numbers N = 0, 1, 2,... both represent important steps toward realizing diverse protocols in quantum information science. Coherent manipulation of the atomic state via Raman transitions provides a new tool in cavity QED for in situ monitoring and control of the atom-cavity system. All of these achievements share a common point of departure: the regime of strong coupling. It is thus interesting to consider briefly the history of the strong coupling criterion in cavity QED and to trace out the path that research has taken in the pursuit of this goal

    Far-UV Emission from Elliptical Galaxies at z=0.55

    Get PDF
    The restframe UV-to-optical flux ratio, characterizing the ``UV upturn'' phenomenon, is potentially the most sensitive tracer of age in elliptical galaxies; models predict that it may change by orders of magnitude over the course of a few Gyr. In order to trace the evolution of the UV upturn as a function of redshift, we have used the far-UV camera on the Space Telescope Imaging Spectrograph to image the galaxy cluster CL0016+16 at z=0.55. Our 25''x25'' field includes four bright elliptical galaxies, spectroscopically confirmed to be passively evolving cluster members. The weak UV emission from the galaxies in our image demonstrates that the UV upturn is weaker at a lookback time 5.6 Gyr earlier than our own, as compared to measurements of the UV upturn in cluster E and S0 galaxies at z=0 and z=0.375. These images are the first with sufficient depth to demonstrate the fading of the UV upturn expected at moderate redshifts. We discuss these observations and the implications for the formation history of galaxies.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in ApJ Letter

    Optical pumping via incoherent Raman transitions

    Get PDF
    A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pumping schemes is that the atom can be prepared in any of the F=3 Zeeman states. We demonstrate the scheme in the context of cavity quantum electrodynamics, but the technique is equally applicable to a wide variety of atomic systems with hyperfine ground-state structure.Comment: 8 pages, 4 figure
    • …
    corecore