16 research outputs found

    Non-Linear Relativity in Position Space

    Full text link
    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.Comment: 7 pages, revised versio

    Bouncing Universes with Varying Constants

    Full text link
    We investigate the behaviour of exact closed bouncing Friedmann universes in theories with varying constants. We show that the simplest BSBM varying-alpha theory leads to a bouncing universe. The value of alpha increases monotonically, remaining approximately constant during most of each cycle, but increasing significantly around each bounce. When dissipation is introduced we show that in each new cycle the universe expands for longer and to a larger size. We find a similar effect for closed bouncing universes in Brans-Dicke theory, where GG also varies monotonically in time from cycle to cycle. Similar behaviour occurs also in varying speed of light theories

    Quantum symmetry, the cosmological constant and Planck scale phenomenology

    Full text link
    We present a simple algebraic argument for the conclusion that the low energy limit of a quantum theory of gravity must be a theory invariant, not under the Poincare group, but under a deformation of it parameterized by a dimensional parameter proportional to the Planck mass. Such deformations, called kappa-Poincare algebras, imply modified energy-momentum relations of a type that may be observable in near future experiments. Our argument applies in both 2+1 and 3+1 dimensions and assumes only 1) that the low energy limit of a quantum theory of gravity must involve also a limit in which the cosmological constant is taken very small with respect to the Planck scale and 2) that in 3+1 dimensions the physical energy and momenta of physical elementary particles is related to symmetries of the full quantum gravity theory by appropriate renormalization depending on Lambda l^2_{Planck}. The argument makes use of the fact that the cosmological constant results in the symmetry algebra of quantum gravity being quantum deformed, as a consequence when the limit \Lambda l^2_{Planck} -> 0 is taken one finds a deformed Poincare invariance. We are also able to isolate what information must be provided by the quantum theory in order to determine which presentation of the kappa-Poincare algebra is relevant for the physical symmetry generators and, hence, the exact form of the modified energy-momentum relations. These arguments imply that Lorentz invariance is modified as in proposals for doubly special relativity, rather than broken, in theories of quantum gravity, so long as those theories behave smoothly in the limit the cosmological constant is taken to be small.Comment: LaTex, 19 page

    New varying speed of light theories

    Full text link
    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying cc, dispelling the myth that the constancy of cc is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying cc induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of ``black'' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in cc. Finally we describe the observational status of the theory. The evidence is currently slim -- redshift dependence in the atomic fine structure, anomalies with ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight, but not insurmountable. We conclude with the observational predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology

    Full text link
    Within the framework of loop quantum cosmology, there exists a semi-classical regime where spacetime may be approximated in terms of a continuous manifold, but where the standard Friedmann equations of classical Einstein gravity receive non-perturbative quantum corrections. An approximate, analytical approach to studying cosmic dynamics in this regime is developed for both spatially flat and positively-curved isotropic universes sourced by a self-interacting scalar field. In the former case, a direct correspondence between the classical and semi-classical field equations can be established together with a scale factor duality that directly relates different expanding and contracting universes. Some examples of non-singular, bouncing cosmologies are presented together with a scaling, power-law solution.Comment: 14 pages, In Press, JCA
    corecore